
Machine Learning I

Vlad Tkachuk

December 12, 2024



Table of Contents

Notation Reference 4

1 Introduction 7
1.1 What is Machine Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Unsupervised vs. Supervised vs. Reinforcement Learning . . . . . . 8
1.1.2 Offline (Batch) vs. Online Learning . . . . . . . . . . . . . . . . . . 9
1.1.3 Stochastic vs. Adversarial Learning . . . . . . . . . . . . . . . . . . 9
1.1.4 Focus of This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 An Example of Supervised Learning . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Structure of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Math Review 13
2.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Summation and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.3 Summation and Integration over Multivariate Functions . . . . . . . 22

2.6 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.1 Useful Derivative Rules . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 Linearity and Derivative Properties . . . . . . . . . . . . . . . . . . . 25
2.6.3 Partial Derivatives and Gradients . . . . . . . . . . . . . . . . . . . . 25

3 Probability 27
3.1 Probability Theory and Random Variables . . . . . . . . . . . . . . . . . . . 27
3.2 Defining Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Probability mass functions for discrete random variables . . . . . . . 31
3.2.2 Probability density functions for continuous random variables . . . . 33

3.3 Multivariate Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Marginal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Conditional Probability and Independence . . . . . . . . . . . . . . . 39

3.4 Representing Features, Labels, and Datasets as Random Variables . . . . . 44
3.5 Functions of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 The Predictor and Learner are Functions of Random Variables . . . 45
3.6 Expectation and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.1 Expectation of Functions of Random Variables . . . . . . . . . . . . 46
3.6.2 Variance of Random Variables . . . . . . . . . . . . . . . . . . . . . 47
3.6.3 Expectation of Multivariate Random Variables . . . . . . . . . . . . 48

1



3.6.4 Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Properties of expectations and variances . . . . . . . . . . . . . . . . . . . . 50
3.8 Probability Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Supervised Learning 53
4.1 Defining the Learning Objective . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Regression and Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Empirical Risk Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Estimation 58
5.1 Estimating the Mean of a Coin Flip . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Estimating the Expected Loss of a Predictor . . . . . . . . . . . . . . . . . 60

6 Optimization 62
6.1 Optimization Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Continuous Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.1 Optimization Over Multidimensional Domains . . . . . . . . . . . . 65
6.3 Closed Form Solution for Linear Regression . . . . . . . . . . . . . . . . . . 67

6.3.1 Minimizing the Estimate of the Expected Loss . . . . . . . . . . . . 68
6.3.2 Defining the Learner . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 Optimization with Gradient Descent . . . . . . . . . . . . . . . . . . . . . . 70
6.4.1 Second-Order Gradient Descent (Newton’s Method) . . . . . . . . . 71
6.4.2 (First-Order) Gradient Descent . . . . . . . . . . . . . . . . . . . . . 74
6.4.3 Multivariate Gradient Descent . . . . . . . . . . . . . . . . . . . . . 77
6.4.4 Selecting the Step Size . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 Gradient Descent for Linear Regression . . . . . . . . . . . . . . . . . . . . 81
6.5.1 Batch Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5.2 Mini-Batch Gradient Descent . . . . . . . . . . . . . . . . . . . . . . 85

6.6 Polynomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Evaluating Predictors 93
7.1 Estimated vs. Expected Loss of a Predictor . . . . . . . . . . . . . . . . . . 93
7.2 Estimation, Approximation, and Irreducible Error . . . . . . . . . . . . . . 98
7.3 Selecting a Function Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4 Bias and Variance Tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.6 Summary of the Different Errors . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Maximium Likelihood and Maximium A Posteriori Estimation 110
8.1 Maximum Likelihood Estimation (MLE) . . . . . . . . . . . . . . . . . . . . 110

8.1.1 MLE Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.1.2 MLE Learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Maximum A Posteriori Estimation (MAP) . . . . . . . . . . . . . . . . . . . 114
8.2.1 MAP Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2.2 MAP Learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2



9 Classification 120
9.1 Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.1.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.2 Multiclass Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.2.1 Softmax Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.2.2 Logistic Regression as a Special Case of Softmax Regression . . . . . 133

10 Neural Networks 136
10.1 Neural Networks: A Special Case . . . . . . . . . . . . . . . . . . . . . . . . 136
10.2 Neural Networks: The General Case . . . . . . . . . . . . . . . . . . . . . . 138
10.3 ERM with Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.4 Neural Networks Learning Better Features . . . . . . . . . . . . . . . . . . . 142
10.5 Softmax as a Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 144

11 Language Models 146
11.1 Representing Tokens as Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 147

11.1.1 Token Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
11.2 Predicting the Next Token . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
11.3 Creating a Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
11.4 ERM for Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

12 Exercise Solutions 153

A Extra Details on Probabilities 162

3



Notation Reference

Set notation

X A generic set of values. For example, X = {0, 1} is the set containing only 0 and 1,
X = [0, 1] is the interval from 0 to 1 and X = R is the set of real numbers. Most of the
time caligraphic letters such as X ,Y,Z will be used for sets.

P(X ) The power set of X , a set containing all possible subsets of X .

[a, b] Closed interval with a < b, including both a and b.

(a, b) Open interval with a < b, with neither a nor b in the set.

(a, b] Open-closed interval with a < b, including b but not a.

[a, b) Closed-open interval with a < b, including a but not b.

Tuples, Vectors and Matrices
x Unbold lowercase variables are generally scalars.

(x1, x2, . . . , xd) A tuple; i.e., an ordered collection of d elements that can have duplicates.

x Bold lowercase variables are vectors. By default, vectors are column vectors.

X Bold uppercase variables are matrices. This bold variable looks like a random variable
that is a vector, X, but the random variable is italicized. It will often be clear from context
when this is a random variable representing a vector and when it is a matrix.

X> The transpose of the matrix, where we swap the elements around the diagonal of the
matrix. An n× d matrix consisting of n vectors each of dimension d can be expressed as

X = [x1 x2 . . . xn]> .

A vector x is a matrix (a d× 1 matrix), and the transpose similarly flips the orientation: a
row vector becomes a column vector, and a column vector becomes a row vector.

a>b We primarily use the transpose to obtain the dot product between two vectors
a,b ∈ Rd:

a>b =
d∑
j=1

ajbj .
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Function notation
f : X → Y The function is defined on domain X to co-domain Y, taking values x ∈ X
and sending them to f(x) ∈ Y.

df
dx(x) The derivative of a function at x ∈ X , where f : X → R for X ⊂ R.

∇f(x) The gradient of a function at x ∈ X , where f : X → R for X ⊂ Rd. It holds that

∇f(x) =
(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xd

)>
.

mina∈B g(a) The minimum value of a function c across values a in a set B. Note that
this is equivalent to − (maxa∈B −g(a)).

argmina∈B g(a) The item a in set B that produces the minimum value g(a). Note that
this is equivalent to argmaxa∈B −g(a).

Random variables and probabilities
X A random variable is written in uppercase.

X The space of values for the random variable.

x Lowercase variable is an instance or outcome, x ∈ X .

X A random variable representing a vector is written bold uppercase.

∼ indicates that a random variable is distributed as or equivalently that the random
variable is sampled according to e.g., X ∼ N (µ, σ2).

Supervised Learning and ERM

D A dataset is a tuple D = ((x1, y1), (x2, y2), ..., (xn, yn)).

D A random variable representing a dataset

F The function class
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Useful formulas and rules

log (x · y) = log(x) + log(y)

log
(
x

y

)
= log(x)− log(y)

log (xy) = y log(x)
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Chapter 1

Introduction

This book focuses on the fundamentals underlying machine learning. Machine learning can
be well-characterized as a field of applied mathematics. To understand machine learning
concepts, it is important to be comfortable with mathematical terminology and concepts.
This requirement can seem like a barrier, since you have to learn the language of math-
ematics simultaneously to the machine learning concepts. This added difficulty is not so
uncommon in learning: to learn about Spanish poetry, for example, you may first have
to learn the underlying language (Spanish). If you understand that mathematics is just
a language in which you are not yet proficient—rather than that you have some inherent
inability—then you can embrace this part of machine learning and buckle down and learn
the needed language. And, what better way to learn this language than immersion in a
useful and fun topic: machine learning. Much of the required mathematical background
will involve basic understanding of probability and optimization; this book will attempt to
provide most of that required background throughout. However, we attempt to provide only
the necessary math background at the beginning of the book, so as to progress quickly to
the machine learning concepts. As such, occasionally we will introduce a new mathematical
concept just-in-time when we need it, rather than all at once at the beginning of the book.

In the next section we give a high-level explanation of what is meant by learning and
introduce supervised learning which will be the focus of this book. After that, we give an
example of a supervised learning problem, predicting house prices based on a dataset of
previously sold houses. We conclude the chapter by explaining the structure of this book.

1.1 What is Machine Learning?
In this book we will think of machine learning as learning that is done by a computer. Then
the crucial question becomes: what is learning? Learning can be defined as the process of
gaining knowledge from experience. This is a broad definition, and can encompass many
different types of learning. In this course, we will focus primarily on supervised learning,
but it is essential to understand the broader landscape of learning paradigms to appreciate
where supervised learning fits within the field of machine learning.

To get a sense of the different types of learning, we will use the next few subsections
to go over some examples. In each case, we will identify the experience, and the resulting
knowledge that is gained through learning. The different types of learning will differ in how
the experience is presented to the learner, and what type of experience it is. The examples
are to be treated as useful tools for building ones intuitions about the different types of
learning, they are not to be used as the formal definitions of the learning types. For the
specific case of supervised learning, we will provide a more formal definition in Chapter 4,
as it is the focus of this book; however, for all the other types of learning we only leave you

7



with the following examples.

1.1.1 Unsupervised vs. Supervised vs. Reinforcement Learning

Unsupervised learning, supervised learning, and reinforcement learning differ in the type
of experience. We use the example of a person learning to play tennis to illustrate these
concepts.

Unsupervised Learning

• Experience: A person has a tennis racket and ball but lacks knowledge of the game’s
rules. They practice by hitting the ball against a wall.

• Knowledge: Improved motor skills and coordination.

Since the person lacks knowledge of the game’s rules the experience they acquire by
hitting the ball against the wall is considered unlabeled and the process of learning from
unlabeled experience is called unsupervised learning.

Supervised Learning

• Experience: A person watches instructional videos or tutorials that demonstrate the
correct techniques and strategies for playing tennis.

• Knowledge: How to play tennis well

Here, the experience is labeled, as the correct techniques and strategies are provided to
the person, making this an instance of supervised learning.

Reinforcement Learning

• Experience: The person knows the rules of tennis and plays games of tennis. They
receive feedback based on the success of their actions (ex: they hit the the ball and it
goes over the net). The person is not told what the correct techniques and strategies
are, instead they only get feedback on the success of their actions.

• Knowledge: How to play tennis well

Notice how the Knowledge gained in the supervised learning example is the same as the
knowledge gained in this case. However, the experience is different. In supervised learning
the person is told what the correct techniques and strategies are, which implies that all other
techniques and strategies are considered wrong or less correct. In reinforcement learning
the person is not told what the correct techniques and strategies are, they only receive
feedback on the success of their actions1. This scenario illustrates reinforcement learning,
where learning is driven by feedback from actions taken.

1Reinforcement learning usually also emphasizes the fact that experience is recieved with some structure
across time. For instance in the tennis example the strategies you take in a later part of a game depend
on how you did at the start of the game. Although this is another important distinction, for the purposes
of focusing only how labeled data differs from the data recieved in reinforcement learning we exclude this
temporal aspect from our discussion.
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1.1.2 Offline (Batch) vs. Online Learning

How data is processed during learning also creates an important distinction. The two
distinctions are called offline (batch) learning and online learning. We use the example of
learning language to illustrate the difference.

Offline (Batch) Learning

• Experience: All available text data from the internet is collected as a single, large
dataset.

• Knowledge: A language model like ChatGPT that can generate and understand
sentences.

Offline learning involves processing all the experience as one large batch.

Online Learning

• Experience: A person engages in language lessons and real-time conversations with
others.

• Knowledge: The individual progressively develops the ability to comprehend and
produce sentences in the language.

The key distinction from offline learning lies in how the experience is processed. In online
learning, the learning is done incrementally, integrating new experience as it is encountered,
rather than all at once.

1.1.3 Stochastic vs. Adversarial Learning

How the experience is generated also differentiates learning types. Two such categories are
stochastic learning and adversarial learning. In this case we use the example of a person
learning to play two different games: slot machines and chess.

Stochastic Learning

• Experience: A person is at a casino playing 3 different slot machines, each producing
different random payouts.

• Knowledge: Knows which slot machine offers the highest expected payout based.

The experience is generated by a random process, the slot machines, and the person is
learning from this random process. Stochastic learning involves learning from experience
that is generated by a random processes.
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Adversarial Learning

• Experience: A person plays games of chess where their opponent actively tries to
defeat them.

• Knowledge: How to play chess well.

The important distinction here is that the experience is not generated by a random pro-
cess, but rather by an opponent who is actively trying to defeat the person. The opponent
is often called an adversary and learning from experience that is generated by an adversary
it is called Adversarial learning.

1.1.4 Focus of This Book

Roughly speaking, in this book our focus will be on designing algorithms that will take
as input experience and output knowledge. We will focus on supervised, offline, stochastic
learning, which we will simply refer to as supervised learning, following common practice in
the field. In essence, supervised learning involves learning from a randomly sampled batch
of labeled data. While we will provide a more rigorous definition of supervised learning
in Chapter 4, for now, we present an example to illustrate how an algorithm might do
supervised learning.

1.2 An Example of Supervised Learning
In this example we will formulate the problem of predicting house prices as a supervised
learning problem. We will do this in fairly mathematical terms. If you are not comfortable
with the math, don’t worry, we will cover all the necessary math in the next few chapters.
The goal of this section is to give you a sense of what you will be learning in this book.

Consider the setting where you would like to predict the price of a house based on some
features of the house. For instance you might have house features such as the number of
rooms it has and its age. Without any previous examples of houses and their prices, it would
be hard to predict the price of an unseen house. Instead assume we are randomly given some
examples. We will represent each example as (x, y) where x ∈ R2 is a vector representing
the features (number of rooms and age) of the house and y ∈ R is the corresponding selling
price. These examples are our exactly the experience we mentioned in the previous section
The experience is often called a dataset and denoted as D = ((x1, y1), . . . , (xn, yn)) if we
have n examples. Notice how this is the supervised learning setting since the dataset is
randomly given to us as a batch of labeled examples (where the label here is the price).

Recall that our goal is to predict the price of a house based on its features. The ability
to do this would be considered knowledge learned from experience. We will represent this
knowledge as a predictor function f̂ : R2 → R that takes as input the features of a house
and outputs a prediction of the price. The question remains of how to design an algorithm
that learns a predictor f̂ from the dataset D. We will call this algorithm the learner and
represent it as a function A that takes as input the dataset D and outputs a predictor f̂ .
First we have to decide what a predictor that is good means. One common definition is
that a good predictor is one that predicts the price of unseen houses well. Since we do not
have access to unseen houses (by the definition of unseen), we cannot measure the quality
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Figure 1.1: An example of a linear function fit to the dataset D =
{(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)}. The x-axis represents the number of rooms, and
the y-axis represents the price in hundreds of thousands.

of a predictor directly. Instead, we assume that our dataset is a good representation of all
the houses we might see (since it is randomly samples) and instead measure the quality of
a predictor on the dataset.

Mathematically the objective of the learner A is to output a predictor f̂ that minimizes
average loss on the dataset D. The loss measures how well the predictor f̂ predicts the price
of the house given its features. A common choice for the loss is the squared loss (f̂(x)−y)2.
Notice that this loss function is a reasonable choice since if the predictor f̂ outputs y when
given x then the loss is zero. The average loss of a predictor f on the dataset D is then
given by:

n∑
i=1

(f̂(xi)− yi)2

As we will see later, this optimization problem is simple to solve if we restrict f̂ to only
linear functions. The solution is a straight line that tries to best fit the prices yi. A simple
illustration of such a predictor function, for only one feature (the number of rooms) and 4
examples, is depicted in Figure 1.1.

To recap, the learner A we have designed takes as input a dataset D and outputs a
predictor f̂ that minimizes the average loss on the dataset (the predictor is the best fitting
line in this case). There are several questions that we might ask about this predictor. For
example, how well does f̂ predict the price of unseen houses? How does the quality of the
predictor depend on the size of the dataset? How does restricting the predictor to linear
functions affect the quality of the predictor? How does the predictor change if the dataset
changes? Answering these questions will require tools from probability, which we will cover
in these notes.

1.3 Structure of the Book
In Chapters 2, 3 and 5 we will provide most of the needed background in mathematics,
probability and statistics, for the rest of the book. Math concepts such as basic set no-
tation, function notation, and calculus basics are covered in Chapter 2. The necessary
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probability is covered in Chapter 3 and the necessary estimation is covered in Chapter 5.
After reading these chapters, look over the notation section at the beginning of the book,
which summarizes the formulas, as well as the notation we will use throughout. Some of
the definitions in the notation section will not be addressed in Chapters 2, 3 and 5, but
rather just-in-time when we need to start using it later in the notes.

In Chapter 4 we will formalize the supervised learning problem, and Chapter 6 we
will provide some methods for solving it. We will learn in Chapter 4 that supervised
learning problems can split into: regression, where the output is a continuous value, and
classification, where the output is a discrete label. In Chapter 6 we learn how to use a
closed form solution or gradient descent to solve regression problems.

Next, we will be interested in evaluating the learned functions, and in understanding
how to modify the learning process to improve the predictions (Chapter 7 and ??). Here
we will be introduce to key concepts such as overfitting, underfitting, and how it related to
the bias-variance tradeoff (Chapter 7). To address the issues of overfitting and underfitting,
we will introduce regularization techniques (??).

In Chapter 8 we will change our objective from prediction to learning the parameters
of a distribution. We will see how this can be solved using maximum likelihood estimation,
and maximum a posteriori estimation. It will turn out that these two problems are closely
related to the prediction problem, and that the same optimization techniques can be used
to solve them.

Having studied regression problems in detail, we will move on to classification problems
in Chapter 9. We will introduce a new technique called logistic regression. Fortunately, we
will find that many of the same techniques used for regression can be applied to classification.
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Chapter 2

Math Review

In Chapter 1, we gave an example of what a supervised learning problem looks like. We
informally defined supervised learning as learning from a randomly sampled batch of labeled
data.

The goal of this chapter is to provide us with the mathematical tools needed to formally
define part of the supervised learning setting. In particular, by the end of this chapter you
should be able to understand that:

1. A dataset is a batch of labeled data, which can be formally represented as a tuple of
tuples D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n where xi ∈ X is a feature vector, and
yi ∈ Y is a label for all i ∈ {1, . . . , n}.

2. A learner can be formally represented as a function A : (X × Y)n → {f |f : X → Y}
which is a function that takes as input a dataset and outputs a predictor function.

3. A predictor can be formally represented as a function f : X → Y which is a function
that takes as input a feature vector and outputs a label.

To achieve this goal we will cover sets, tuples, vectors, and functions. We will also cover
summation, itegration and derivatives in this chapter, which will be useful for understanding
probability concepts in Chapter 3. After this chapter we will still be missing the definition
of what a randomly sampled dataset means, which we will cover in Chapter 3, and what is
the objective of the learner, which we will cover in Chapter 4.

2.1 Sets

A set is a collection of distinct and unordered objects. For example, the set {0, 1, 2} contains
the numbers 0, 1, and 2 and {0, 1, 2, 2} is not a valid set since it has duplicates. The set
{cat, dog} = {dog, cat} since order doesn’t matter. Some other common sets are: ∅ (empty
set), N = {0, 1, 2, 3, . . .} (natural numbers), and R (real numbers). As with numbers, it
useful to assign variables to sets. Unlike variables for numbers (where we use lower case
letters), for sets we will use caligraphic letters, such as X , Y, and Z. Assigning a variable to
a set allows us to refer to the set by the variable name, rather than listing all the elements
in the set. For example, we will define X = {0, 1, 2} and Y = {cat,dog} for the remainder
of this subsection (unless otherwise stated). We will also use Z to refer to any arbitrary set
throughout.
Exercise 2.1: Write a valid set and an invalid set. �

We can talk about elements of a set by using the symbol ∈ and subsets using ⊂. The
negations of these symbols are /∈ and 6⊂. Some examples include: cat ∈ Y, cat /∈ X ,
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X ⊂ N,X ⊂ R,N ⊂ R, X 6⊂ Y, and X ⊂ X . Since we will not define the set of real numbers
R formally we can get a sense of what the set contains by listing some of the elements:
{0, 1,−2, 1/2, 0.23, π} ⊂ R, ∞ /∈ R.
Exercise 2.2: Is π ∈ N? �

Exercise 2.3: Is {−1, 0, 1} ⊂ N? �

Some other useful sets are the intervals which are sets of real numbers between two
values. There are three types of intervals: open, closed, half-open (or half-closed if you
prefer). An open interval does not include the endpoints and is written as (a, b), a closed
interval includes the endpoints and is written as [a, b], a half-open interval includes one
endpoint and is written as [a, b) or (a, b].

We can perform operations on sets such as union (∪), intersection (∩), difference (\),
and complement (Zc). The union of two sets X and Y is the set of elements that are in
either X or Y or both and is written as X ∪ Y. The intersection of two sets X and Y
is the set of elements that are in both X and Y and is written as X ∩ Y. The difference
of two sets X and Y is the set of elements that are in X but not in Y and is written as
X\Y. To define the complement of a set Z we need to define the universal set U which
is the set of all possible elements. The complement of a set Z is the set of elements that
are in U but not in Z and is written as Zc = U\Z. Some examples of these operations
are: {0, 1, 2} ∪ {2, 3} = {0, 1, 2, 3}, {0, 1, 2} ∩ {2, 3} = {2}, {0, 1, 2}\{2, 3} = {0, 1}, and
{0, 1, 2}c = {3, 4, 5, . . .}.
Exercise 2.4: Given the universal set U = {0, 1, 2, 3, 4, 5}, what is the complement of the
set Z = {0, 1, 2}? �

Exercise 2.5: Given the sets X = {0, 1} and Y = {1, 2}, find X ∪ (X ∩ Y). �

To construct more complex sets we can use set builder notation which is a way to define
a set by specifying a property that the elements must satisfy. The structure of set builder
notation is {element|property}, and is read as “the set of elements such that the elements
satisfy the property”. For example, the set X = {0, 1, 2} can be defined as {x|x ∈ N, x < 3}
which is read as “the set of natural numbers less than 3”. The power of set builder notation
is that it allows us to define complex sets without listing all the elements. Some examples
are the even numbers {x|x ∈ N, x is even}, and the prime numbers {x|x ∈ N, x is prime}.
The set builder notation also allows us to define some previous definitions more formally.
For instance, set difference can be defined as X\Y = {x|x ∈ X , x /∈ Y}. Finally, we can use
the set builder notation to define the power set P(Z) = {S|S ⊂ Z} which is the set of all
subsets of Z.
Exercise 2.6: Express the following in set builder notation: the set of all real numbers
greater than −1 and less than 2. �

Exercise 2.7: Express the set of all real numbers that are not natural numbers �

The number of elements in a set Z is called the cardinality of the set and is denoted as
|Z|. For example, |X | = 3, |Y| = 2 and |∅| = 0. The cardinality of a set can be infinite,
such as |N| and |R|. It turns out that there are different sizes of infinity and |N| is smaller
than |R|. The cardinality of the set of natural numbers is called countably infinite and the
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cardinality of the set of real numbers is called uncountably infinite. Roughly speaking, a
set is countably infinite if you can list all the elements in the set and uncountably infinite
if you cannot. Some examples of countably infinite sets are N, {x ∈ N|x is even} (the even
numbers), and {x ∈ N|x is prime} (the prime numbers). Examples of uncountably infinite
sets are R, [0, 1], and [0, 1] ∪ [2, 3]. If the cardinality of a set is finite or countably infinite
we will say the set if countable, while if the cardinality is uncountably infinite we will say
the set is uncountable.

2.2 Tuples

An tuple is a collection of ordered objects with duplicates allowed. For example (0, 1, 2) is
a tuple that contains the numbers 0, 1, and 2 in that order, and (cat,dog) is a tuple that
contains the animals cat and dog in that order. Notice that (cat,dog) 6= (dog, cat) since
the order matters. Also, (0, 1, 2) 6= (0, 1, 2, 2) since duplicates are allowed in tuples. Notice
that the brackets are round instead of curly. This is the standard notation; however, you
might have noticed that we already used round brackets for intervals. As such, it will be
the job of the reader to determine if the round brackets are for intervals or tuples based on
the context.

Tuples are often created through the Cartesian product which is a way to create a set of
tuples from two sets. The Cartesian product of two sets X and Y is written as X ×Y, and
is the set of all possible tuples where the first element is from X and the second element
is from Y. We can use set builder notation to formally define the Cartesian product as
X × Y = {(x, y)|x ∈ X , y ∈ Y}. For example,

Y × X = {(cat, 0), (cat, 1), (cat, 2), (dog, 0), (dog, 1), (dog, 2)}.

If the two sets are the same set then often the Cartesian product is written as Z2 = Z×Z. A
classic example is the real plane R2 = R×R which is the set of all possible points in the plane,
such as (0, 0) ∈ R2 and (π, 2) ∈ R2. The Cartesian product can be extended to any finite
number of sets, such as Z1×Z2×· · ·×Zn = {(z1, z2, . . . , zn)|z1 ∈ Z1, z2 ∈ Z2, . . . , zn ∈ Zn}.
Similarly, we use the notation Zn = Z × Z × · · · × Z, where the cartesian product of Z is
take n times.
Example 2.1: This notation will be used to define our dataset. We begin by defining an in-
dividual feature-label pair. Suppose the features belong to X = R2 and labels belong to Y =
R. Then X ×Y would contain tuples of the form ((x1, x2), y) where x1, x2, y ∈ R. Now, the
dataset is a collection of n feature-label pairs, D = (((x1,1, x1,2), y1), . . . , ((xn,1, xn,2), yn)).
Notice that the datasetD is an element of the set (X×Y)n = (X×Y)×(X×Y)×· · ·×(X×Y),
where the cartesian product of X × Y is taken n times. �

Exercise 2.8: Explicitly write what the set {1, 2} × {a, b} looks like. �

Exercise 2.9: Let X = {0, 1}. What is the cardinality of the set X 3 (the set of all ordered
triples formed by the Cartesian product of X )? �

Exercise 2.10: Suppose you wanted to represent any house by using three features of it.
The first feature was the number of rooms (an natural number), the year it was made (a
real number), and the third feature was the year the house was built (a natural number).
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How would you write the set of all possible houses that are represented by these features,
such that an example of an element from this set is (1, 1000.7, 2005)? �

2.3 Vectors
The motivation to introduce vectors instead of just using tuples is that vectors have addi-
tional structure that allows us to perform mathematical operations such as addition, scalar
multiplication, and computing the dot product. In particular, vectors enable us to model
relationships between features and labels. For example, the target value y might be a linear
function of the features, i.e.,

y = w1x1 + w2x2.

For the purposes of this course, we define a vector space as a set of vectors that can be
added together and scaled by scalars (real numbers). For example, R2 is a vector space. A
vector is an element of a vector space and will be denoted using a bold variable. We will
write vectors in column format as follows:

x =
(
x1
x2

)
∈ R2.

In this course, we will work exclusively with the vector spaces R, R2, R3, and so on. When
working with R, we will omit the bold font and simply write x ∈ R.

To see why R2 is a vector space, notice that for any two vectors x =
(
x1
x2

)
and y =

(
y1
y2

)
,

and any scalar c ∈ R, we have:

x + y =
(
x1 + y1
x2 + y2

)
∈ R2,

and
cx =

(
cx1
cx2

)
∈ R2.

Thus, vector addition and scalar multiplication result in vectors that are still elements of
R2.

In contrast, a set like Y = {cat,dog} is not a vector space, since there is no meaningful
way to add cat + dog or to multiply cat by a scalar.

Some concrete examples of vectors are:

x =
(

0
1

)
∈ R2, w =

1
2
3

 ∈ R3, y = 0 ∈ R.

A useful operation on vectors is the transpose, denoted by x>, which converts a column
vector into a row vector or a row vector into a column vector. For instance,

x =
(
x1
x2

)
, x> = (x1, x2) and (x1, x2)> =

(
x1
x2

)
.
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The transpose is particularly useful when defining the dot product of two vectors, which is a
method of multiplying two vectors together to obtain a scalar. The dot product is defined

as follows. For vectors w =


w1
w2
. . .
wd

 and x =


x1
x2
. . .
xd

 in Rd, the dot product is:

w>x = w1x1 + w2x2 + · · ·+ wdxd.

The dot product outputs a scalar value in R and is commutative, i.e., w>x = x>w.
Additionally, using the transpose allows us to write vectors in row format when appro-

priate, saving space in our notation.
It is important to note that while the notation for the transpose of a vector x> and a

tuple (x1, x2) looks similar, they serve different purposes:

• A tuple (x1, x2) can have elements from any set. This means that x1, x2 do not need
to be elements of R. Instead we could have that x1 ∈ N while x2 ∈ {cat,dog}.

• A vector x is an element of a vector space (like R2) and carries additional structure
that allows for algebraic operations like vector addition and scalar multiplication.

• The transpose x> is a row vector, which is useful for certain mathematical operations
like computing the dot product.

For practical purposes in this course, we can often treat tuples and vectors interchange-
ably when dealing with elements of Rd, since they both can represent points in d-dimensional
space. In particular, in this course all vectors can be thought of as tuples, but not all tuples
can be thought of as vectors (again this is since math operations with tuples might not
always make sense). The context will make it clear whether we are considering an object
as a tuple (for data representation) or as a vector (for mathematical operations).
Exercise 2.11: Given two vectors x = (1, 3)> and y = (2,−1)>, calculate 3x− 2y. �

Exercise 2.12: What is the dot product of the vectors x = (2, 3, 1)> and y = (1, 4, 0)>?
�

We will also need to define a matrix which we will think of as a multiple row vectors
vertically stacked. A matrix is denoted by a bold capital letter, such as M, and is written
using square brackets as:

M =
[
v>1
v>2

]
=
[
v1,1 v1,2
v2,1 v2,2

]
where v1 = (v1,1, v1,2)> ∈ R2 and v2 = (v2,1, v2,2)> ∈ R2. In this case the matrix only has
2 rows (i.e. 2 row vectors verticlaly stacked), but we can have matrices with any number
of rows. Matrix multiplication is a way to multiply a matrix by a vector or another matrix
and can be defined through the dot product. For example, the matrix M can be multiplied
by the vector x as follows:

Mx =
[
v>1
v>2

](
x1
x2

)
=
(

v>1 x
v>2 x

)
=
(
v1,1x1 + v1,2x2
v2,1x1 + v2,2x2

)
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Exercise 2.13: Given the matrix M =
[
1 2
3 4

]
and the vector x = (1, 2)>, calculate Mx.

�

2.4 Functions

A function is a rule that assigns an output to an input. For example, the function f(x) = x2

assigns the output f(2) = 4 to the input x = 2. More generally we write a function as
f : X → Y, where X is the domain of the function and Y is the codomain. This is read as
“f is a function from X to Y”. The domain is the set of all possible inputs and the codomain
is the set of all possible outputs. For example, the function f : R→ R is the function that
takes a real number as input and outputs a real number. Once we specify the function, we
can talk about its range, which is the set of all possible outputs for this specific function.
Next we demonstrate these concepts through various examples, which also introduce some
commonly used functions such as the logarithm and exponential functions.
Example 2.2: f : {0, 1, 2} → N is a function with domain {0, 1, 2} and the codomain
N. To define the function, we need to specify the output for each input. Let us select
f(0) = 1, f(1) = 2 and f(2) = 2. The range of this specific function is {1, 2} since that is
the set of all its possible outputs. If instead we selected f(0) = 1, f(1) = 2 and f(2) = 3,
then the range would be {1, 2, 3}. Importantly, the range is specific to the function we select
and is always a subset of the codomain �

Example 2.3: f : R→ R is a function with domain R and the codomain R. If we define
f(x) = x2, then the range of this function is [0,∞) since the function f(x) = x2 is always
non-negative. �

Example 2.4: Let f : R → R. If we define f(x) = ex, then the range of this function is
(0,∞). Notice how the range does not include zero, since ex approaches but never reaches
zero. Occasionally we will write exp(x) = ex to make the notation more readable if the
exponent is complicated. �

Example 2.5: The function ln(x) = loge(x) is the natural logarithm function. If we define
f(x) = ln(x), then its domain cannot be R since the logarithm is not defined for negative
numbers. Instead we write f : (0,∞)→ R. �

There are a few rules for logarithms and exponentials that will be useful later in the
notes. These include:

ln (ab) = ln(a) + ln(b)

ln
(
a

b

)
= ln(a)− ln(b)

ln
(
ab
)

= b ln(a)

exp(a+ b) = exp(a) exp(b)
exp(a)b = exp(ab)
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Exercise 2.14: Show the second logarithm rule above, using the first and third rule. �

Functions can be combined to create new functions. For example, if we have two func-
tions f : X → Y and g : Y → Z, then we can define a new function h : X → Z as
h(x) = g(f(x)). A notable example is if g(y) = ln(y) and f(x) = exp(x) then h(x) =
ln(exp(x)) = x, which shows that the logarithm and exponential functions are inverses of
each other.

Functions are not limited to only outputting numbers. They can also output functions.
This means the codomain becomes a set of functions.
Example 2.6: g : R → {f |f : R → R} is a function with domain R and codomain the
set of all functions from R to R. If we define g(z) = fz where fz(x) = z + x, then g is a
function that takes a number z and outputs a function fz that adds z to its input. �

Example 2.7: Let g : R → {f |f : R → R}. If we define g(z) = fz where fz(x) = 1 if
z = x and fz(x) = 0 otherwise, then g is a function that takes a number z and outputs a
function fz that is 1 at z and 0 elsewhere. �

A function that outputs a function will be a very important concept in machine learning
because the learner will take as input dataset and output a predictor function.
Example 2.8: In the section about tuples (Section 2.2), we defined a dataset

D = (((x1,1, x1,2), y1), . . . , ((xn,1, xn,2), yn))
= ((x1, y1), . . . , (xn, yn)),

where we simplified the notation here by using vectors xi = (xi,1, xi,2)> for all i ∈ {1, . . . , n}.
We also showed that the dataset D is an element of the set (X × Y)n where X = R2 and
Y = R.

A learner A is a function that takes a dataset as input and outputs a predictor function
f̂ : R2 → R. Formally,

A : (X × Y)n → {f | f : X → Y}.

A specific example of such a learner is:

A(D) = f̂ ,

where

f̂(x) =


yi if x = xj for some j ∈ {1, . . . , n},

then i ∈ {1, . . . , n} is the smallest value that satisfies x = xi
0 otherwise.

This type of learner A is called a memorizer. We can see this by analyzing the behaviour of
the predictor function f̂ that A outputs. The predictor f̂ takes as input any vector x ∈ R2,
but only outputs a value other than 0 if the input is one of the xi vectors in the dataset D.
In particular f̂ outputs yi only when x = xi for some i ∈ {1, . . . , n}. As such, it is said to
memorize all the (xi, yi) in the dataset D. �
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Another useful class of functions is continuous functions. Roughly speaking a function
is called continuous if it does not have abrupt changes in value, or discontinuities1. The
functions w2 and w + 5 are both continuous: you can trace your finger continuously along
the lines produced by these functions. The function

f(w) =


w2 w ∈ [−1, 1]

5 + w w < −1
5− w w > 1

(2.1)

has two discontinuities, one at w = −1 and at w = 1. The function changes from f(1) = 1
and suddenly jumps up to > 5 right after 1. This discontinuous function is depicted in
Figure 2.1. Note that the function restricted to particular subintervals is continuous: it is
continuous on the interval w ∈ [−1, 1], on the interval (−∞,−1) and on the interval (1,∞).

1/9/22, 11:07 AM Piecewise function

https://www.desmos.com/calculator/3zabdb3vgt 1/2

−−−−−−−−−111111111,,,,,,,,,         111111111
111111111,,,,,,,,,         111111111

Figure 2.1: An example of a function that is not continuous, with formula in Eq. (2.1).

2.5 Summation and Integration
Summation and integration notations will be used frequently when we get to the next
chapter on probability and need to calculate expected values. These operations, though
conceptually distinct, share a common foundation: they represent the accumulation of
quantities, either discrete or continuous, across a collection of elements.

2.5.1 Summation

When we are interested in computing the sum of all elements within a finite or countably
infinite set X , we utilize the summation symbol ∑. Specifically, the expression ∑x∈X x

1We do not need the formal definition of a continuous function, since the intuitive definition is sufficient.
For you interest, the formal definition is that a function f : X → R is continuous at x0 ∈ X if for any ε > 0
there exists a δ > 0 such that if ‖x−x0‖ < δ for x ∈ X then |f(x)−f(x0)| < ε. In other words, for arbitrarily
nearby points x and x0 (δ can be made very small) the difference in function values is also arbitrarily small.
The discontinuous function example does not satisfy this property at x0 = 1, because in the neighborhood
around 1, if we pick an ε < 4, we can pick an arbitrarily small neighborhood (δ approaching zero), but the
distance in the function values remains higher than ε.
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represents the sum of the elements of X . For instance, if X = {0, 1, 2}, the corresponding
summation is: ∑

x∈X
x = 0 + 1 + 2 = 3.

Moreover, if our goal is to sum the values of a function f(x) evaluated at each element of
X , we would write ∑x∈X f(x). For example, if f(x) = x2 and X = {0, 1, 2}, the sum of the
function values is given by: ∑

x∈X
f(x) = 02 + 12 + 22 = 5.

The summation notation is equally valid when X is a tuple, whether it is finite or countably
infinite. For example, if X = (0, 1, 2, 2), then:∑

x∈X
x = 0 + 1 + 2 + 2 = 5 and

∑
x∈X

f(x) = 02 + 12 + 22 + 22 = 9.

More generally, a tuple with n elements can be expressed as X = (x1, x2, . . . , xn). In this
case, the sum of the elements of X is written as:∑

x∈X
x = x1 + x2 + · · ·+ xn.

This formulation naturally motivates an alternative, yet equivalent, notation often used
when dealing with ordered collections like tuples. Specifically, we may write:

n∑
i=1

xi =
∑
x∈X

x,

where the index i ranges from 1 to n, reflecting the ordered nature of the elements in the
tuple X = (x1, . . . , xn).

2.5.2 Integration

If instead of summing discrete elements, we are interested in accumulating values over an
uncountably infinite set, we use integration. The integral can be viewed as the continuous
analog of summation, where we accumulate the values of a function over an interval.

For a continuous function f(x) with a domain X ⊃ [a, b], the integral of f(x) with
respect to x over the interval [a, b] is denoted by:

ˆ
[a,b]

f(x) =
ˆ b

a
f(x) dx

This represents the "total area" under the curve of f(x) between x = a and x = b, where
the area is counted positively when the curve is above the x-axis and negatively when it is
below.

Just as the summation notation allows us to accumulate function values across a discrete
set, integration allows us to accumulate function values continuously across an interval. The
integral can be interpreted as the limiting case of summation as the number of subdivisions
of the interval increases infinitely and the width of each subdivision approaches zero.
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For example, if we want to integrate the function f(x) = x2 over the interval [0, 1], we
compute: ˆ 1

0
x2 dx

We can evaluate this integral using the power rule for integration, which states that for
f(x) = xn, we have: ˆ

xn dx = xn+1

n+ 1 + C

Applying this to f(x) = x2, we get:
ˆ 1

0
x2 dx = x3

3
∣∣∣1
0

= 13

3 −
03

3 = 1
3

Thus, the area under the curve f(x) = x2 from 0 to 1 is 1
3 .

Similar to summation, integration respects linearity, meaning that constants can be
factored out, and the integral of a sum is the sum of the integrals:

ˆ b

a
cf(x) dx = c

ˆ b

a
f(x) dx

ˆ b

a
[f(x) + g(x)] dx =

ˆ b

a
f(x) dx+

ˆ b

a
g(x) dx

As a specific example of this property, consider the integral of a constant c over an
interval [a, b]: ˆ b

a
c dx = c

ˆ b

a
1 dx = c(b− a)

This result shows that the integral of a constant function over an interval is simply the
product of the constant and the length of the interval.

2.5.3 Summation and Integration over Multivariate Functions

In many cases, we may be interested in summing or integrating functions that depend on
more than one variable. These operations allow us to extend summation and integration
from one-dimensional functions to higher-dimensional spaces.

Multivariate Summation

If we are summing a function that depends on multiple variables, such as f(x, y), over a
discrete set of points X ×Y, we can perform a double summation. This is often written as:∑

x∈X

∑
y∈Y

f(x, y)

This notation indicates that for each element x in X , we perform a sum over all elements y
in Y. For example, let X = {0, 1} and Y = {1, 2}, and let f(x, y) = x+ y. Then:∑

x∈X

∑
y∈Y

f(x, y) = (0 + 1) + (0 + 2) + (1 + 1) + (1 + 2) = 1 + 2 + 2 + 3 = 8

This demonstrates how we can compute sums over multivariate functions by iterating over
all combinations of the variables.
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Multivariate Integration

Similarly, we can integrate functions that depend on multiple variables. If f(x, y) is a
continuous function over the rectangular domain X = [a1, b1] and Y = [a2, b2], the double
integral is written as: ˆ b1

a1

ˆ b2

a2

f(x, y) dy dx

This represents the total "volume" under the surface defined by f(x, y). The integration is
performed first over y, for a fixed x, and then over x.

As an example, consider the function f(x, y) = x + y over the domain X = [0, 1] and
Y = [0, 1]. The double integral is:

ˆ 1

0

ˆ 1

0
(x+ y) dy dx

We can evaluate the inner integral with respect to y first:
ˆ 1

0
(x+ y) dy = x

ˆ 1

0
1 dy +

ˆ 1

0
y dy = x(1) + y2

2

∣∣∣∣1
0

= x+ 1
2

Now, we integrate with respect to x:
ˆ 1

0

(
x+ 1

2

)
dx =

ˆ 1

0
x dx+ 1

2

ˆ 1

0
1 dx = x2

2

∣∣∣∣1
0

+ 1
2(1) = 1

2 + 1
2 = 1

Thus, the total volume under the surface f(x, y) = x+ y over the unit square is 1.

Linearity in Multivariate Summation and Integration

Just as with single-variable cases, summation and integration over multivariate functions
respect linearity. This means that constants can be factored out, and we can distribute
sums and integrals over sums of functions:∑

x∈X

∑
y∈Y

[f(x, y) + g(x, y)] =
∑
x∈X

∑
y∈Y

f(x, y) +
∑
x∈X

∑
y∈Y

g(x, y)

ˆ b1

a1

ˆ b2

a2

[f(x, y) + g(x, y)] dy dx =
ˆ b1

a1

ˆ b2

a2

f(x, y) dy dx+
ˆ b1

a1

ˆ b2

a2

g(x, y) dy dx

This property is useful when working with complex functions, as it allows us to break
down problems into simpler parts that can be summed or integrated individually.

2.6 Derivatives

The derivative of a function describes how the function changes locally. For a function f(x),
the derivative is commonly denoted either as f ′(x) or df

dx(x), both of which express how f(x)
changes with respect to x. The derivative itself is also a function of x, representing the slope
of the tangent line to the curve of f(x) at any point.
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Figure 2.2: A plot of the function f(x) = x2 and its derivative f ′(x) = 2x evaluated at
−0.2 and 2. The derivative gives the slope of the line tangent to the function, at the given
point. The sign and magnitude of this slope reflects how quickly the function is increasing
or decreasing at that point.

For example, for the function f(x) = x2, the derivative is f ′(x) = 2x. Evaluating this
derivative at x = 2, we find that f ′(2) = 4, indicating that the function is increasing at this
point. Since f ′(2) > 0, the function is increasing as we increase x. More generally, because
f ′(x) = 2x, we observe that the rate of increase of the function grows as x increases.

If instead we evaluate the derivative at x = −0.2, we get f ′(−0.2) = −0.4. In this case,
since f ′(−0.2) < 0, the function is decreasing at this point, although it decreases at a slower
rate due to the smaller magnitude of the derivative. Near x = 0, the derivative approaches
zero, meaning the function is flatter and changes more slowly in this region.

It is important to note that we write df
dx(2), not df(2)

dx , because the derivative function
f ′ = df

dx is computed first, and only then is it evaluated at a specific point, such as x = 2.
The derivative at different points for this function is illustrated in Figure 2.2.

2.6.1 Useful Derivative Rules

There are several key derivative rules that are commonly used and important to remember:

f(x) = xa, f ′(x) = df

dx
(x) = axa−1

f(x) = exp(x), f ′(x) = df

dx
(x) = exp(x)

f(x) = ln(x), f ′(x) = df

dx
(x) = 1

x

f(x) = g(h(x)), u = h(x) f ′(x) = df

dx
(x) = dg

du

du

dx
(x) = g′(u)h′(x) . Chain rule (2.2)

f(x) = g(x)h(x), f ′(x) = df

dx
(x) = g′(x)h(x) + g(x)h′(x) . Product rule

(2.3)
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Example 2.9: For a more concrete example, consider the function f(x) = exp(x2). We can
apply the chain rule by setting u = x2, g(u) = exp(u), h(x) = x2, and then differentiating
as follows:

f ′(x) = g′(u)h′(x) = exp(u) · 2x = 2x exp(x2)

Thus, the derivative of f(x) = exp(x2) is f ′(x) = 2x exp(x2). �

2.6.2 Linearity and Derivative Properties

As with summation and integration, derivatives obey several useful properties, particularly
linearity. The derivative of a sum of functions is the sum of the derivatives, and constants
can be factored out:

d

dx
[af(x) + bg(x)] = a

df

dx
+ b

dg

dx

These properties, along with the chain rule, will be used throughout the notes.
Exercise 2.15: What is the derivative of f(x) = exp(−x3)? �

2.6.3 Partial Derivatives and Gradients

When dealing with multivariate functions (i.e., functions that depend on more than one
variable) we use partial derivatives to describe how the function changes with respect to
one variable, while keeping the other variables fixed.

For a function f(x1, x2, . . . , xn), the partial derivative with respect to xi is denoted as
∂f
∂xi

or f ′xi . This tells us the rate of change of f as xi changes, while all other variables
remain constant.
Example 2.10: Consider the function:

f(x1, x2) = 2x1 + 3x2
2

To compute the partial derivative with respect to x1, we treat x2 as a constant:

∂f

∂x1
= ∂

∂x1
(2x1 + 3x2

2) = 2

Similarly, the partial derivative with respect to x2 is:

∂f

∂x2
= ∂

∂x2
(2x1 + 3x2

2) = 6x2

�

Example 2.11: Now, consider a linear function in d variables, often encountered in
machine learning:

f(x) = f(x1, x2, . . . , xd) = x1w1 + x2w2 + · · ·+ xdwd =
d∑
i=1

xiwi = x>w

Here, x ∈ Rd and w ∈ Rd are vectors and since f does not depend on w, it is assumed to
be fixed.
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The partial derivative of this function with respect to xi is given by:

∂f

∂xi
= wi

This means that the rate of change of f with respect to xi is simply the corresponding
weight wi. �

Example 2.12: Consider the functions:

g(z, y) = (z − y)2 and f(x) = exp(x)

we are interested in computing the partial derivative of the composed function g(f(x), y) =
(exp(x)− y)2 with respect to x.

To find the partial derivative ∂
∂xg(f(x), y), we apply the chain rule. Let’s compute each

part step by step.

1. Compute ∂g
∂z :

g(z, y) = (z − y)2 =⇒ ∂g

∂z
= 2(z − y)

2. Compute dz
dx where z = f(x) = exp(x):

dz

dx
= d

dx
exp(x) = exp(x)

3. Apply the chain rule:

∂

∂x
g(f(x), y) = ∂g

∂z
· dz
dx

= 2(exp(x)− y) · exp(x) = 2 exp(2x)− 2y exp(x)

�

Gradients

In addition to individual partial derivatives, we often work with the gradient, which is the
vector of all partial derivatives of a function. The gradient of a function f(x) is denoted as
∇f(x).

For a function f(x1, x2, . . . , xd), the gradient is defined as:

∇f(x) =
(
∂f

∂x1
(x), ∂f

∂x2
(x), . . . , ∂f

∂xd
(x)
)>

Using our previous example f(x) = x>w, the gradient is:

∇f(x) = (w1, w2, . . . , wd)> = w

Thus, the gradient of the linear function f(x) = x>w is simply w.
The gradient will be particularly important in learning a good predictor function, where

it will help us determine how to adjust our predictor function in order optimize for a
particular objective.
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Chapter 3

Probability

Probability will help us in formally defining the supervised learning setting and reason
about the quality of our learner. Recall that in Chapter 1 we informally defined supervised
learning as learning from a randomly sampled batch of labeled data. In Chapter 2 we defined
the dataset as a tuple of n feature-label pairs. This dataset satisfied the property of being
a batch of labeled data; however, we did not formally define what it means for a dataset to
be randomly sampled. By the end of this chapter you should be able to understand that:

1. The dataset D = ((X1, Y1), . . . , (Xn, Yn)) ∈ (X × Y)n is a random variable, where
the features-label pairs (Xi, Yi) are sampled idenpendently from the same distribution
PX,Y for all i ∈ {1, . . . , n}.

2. The learner A(D) is a random variable, since it is a function of the random variable
D.

3. A predictor f(X) is a random variable, since it is a function of the random variable
X representing a feature vector.

The probability tools covered in this chapter will also be useful to define the objective of
learning in Chapter 4, and when we discuss how to evaluate the quality of our learner in
Chapter 7. After this chapter we will have almost finished defining all the parts in the
supervised learning setting. What will be left is to define the objective of the learner, which
we do next in Chapter 4.

3.1 Probability Theory and Random Variables
Probability theory is as a branch of mathematics that deals with measuring the likelihood
of events. It is based on the more foundational field of measure theory. When first learning
about probability in an undergraduate class the term measure theory is often not even
mentioned as most of the concepts can be understood without it. In these notes we will
follow the same approach and not delve into measure theory. However, at times it will cause
us to be a bit hand-wavy, and we will try to point out (often with a footnote) when we are
doing so1.

At the heart of probability theory is the concept of an experiment. An experiment can
be the process of tossing a coin, rolling a die. When carried out, each experiment has an
outcome, which is an element drawn from a set of predefined options, called the outcome
space. The outcome of flipping a coin is either tails or heads, and the roll of a die is a number
between one and six. Formally the outcome space is represented as a set of outcomes. Each

1For a more detailed coverage of probability we refer the reader to [?].
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outcome can be represented as any object you would like, for instance the outcome of getting
heads on a coin can be represented as a the word "Heads". However, we will usually represent
outcomes as numbers since we will want to do mathematical operations with them. For
example, we might represent the outcome of getting heads on a coin as 1 and the outcome
of getting tails as 0. Then, the outcome space of a coin flip is {0, 1}. Similarly we can
define the outcome space of a die roll as {1, 2, 3, 4, 5, 6}, where each number represents the
outcome of the die roll. The outcomes space can also be an uncountably infinite set, such
as [0,∞), which could represent the age of a randomly selected house.

An event is a subset of the outcome space2. For example, we might want to know the
probability of seeing a 1 or a 3 when rolling a die, which would be represented as the event
{1, 3} ⊂ {1, 2, 3, 4, 5, 6}. Another example is [0, 10] ⊂ [0,∞), which can represent the event
that the age of a house is between 0 and 10 years.

What we are interested in is the probability of an event occurring. This probability is
defined by the probaiblity distribution function (sometimes just called a distribution) which
will be denoted as P. A probability distribution is a function that takes as input an event and
outputs a number between 0 and 1. The value output by the distribution is the probability
of the event occurring. For instance, if the event is getting a heads or tails in a coin flip (i.e.
the event is {0, 1}), then the probability of this event is P({0, 1}) = 1. A probability of 1
means you will either get a heads or a tails in a coin flip 100% of the time. Naturally, the
probability distribution must satisfy some properties that align with our intuition of what
probability is. Informally, if the outcome space is Z, then the probability distribution must
satisfy the following properties3:

1. P (Z) = 1

2. P (A ∪B) = P (A) + P (B) if A and B are disjoint events (i.e. A ∩B = ∅).

The first property states that the probability of the entire outcome space is 1, which makes
sense since the outcome of the experiment must be one of the outcomes in the outcome space.
The second property states that the probability of either event A or event B occurring is
the sum of the probabilities of each event occurring, if the events do not share any outcomes
(i.e. disjoint).

Notice that these properties imply two useful results. The first is that for any event
E , it holds that P (Ec) = 1 − P (E). In words this means that the probability of an event
not occurring is 1 minus the probability of the event occurring. To see why this holds
notice that by the second and first property P(E) + P(Ec) = P(E ∪ Ec) = P(Z) = 1, since
E ∩ Ec = ∅, E ∪ Ec = Z by the definition of the complement. Then rearranging we get
P(Ec) = 1 − P(E). The second useful result is that P (∅) = 0. This is because the empty
set is the complement of the entire outcome space, and so by the first result and the first
property we have P (∅) = 1− P (Z) = 1− 1 = 0.

2An event is not just any subset of the outcome space, it must also belong to something called the event
space (or σ-algebra). If the outcome space is countable, then the event space can be defined to contain all
subsets of the outcome space (i.e. the power set of the outcome space). While when the outcome space is
uncountable the event space cannot contain all the subsets of the outcome space, and something called the
Borel σ-algebra is chosen, which still contains any event you will ever want to speak about in this course.
For an example of an event not in the Borel σ-algebra search the Cantor set. These details are covered in
measure theory and discussed in more detail in Appendix A, but will be unnecessary for these notes.

3The second property actually needs to holds for countable unions of disjoint events. The formal definition
of what a probability distribution needs to satisfy can be found in Appendix A.
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To get a feeling for how probability distributions work, consider the following examples.

Example 3.1: Consider the outcome space Y = {0, 1} which represents the outcome of
a fair coin flip. Since it is a fair coin the probability of getting a heads is 0.5 and the
probability of getting a tails is 0.5. Formally, the probability distribution evaluated at the
event {0} representing tails is P({0}) = 0.5 and evaluated at the event {1} representing
heads is P({1}) = 0.5. Applying the first property we have P(Y) = 1, which makes sense
since the coin flip must result in either heads or tails. Applying the second useful result
we have P(∅) = 0. This describes the probability distribution for all possible events in the
outcome space. �

Example 3.2: Now, consider the outcome space X = {1, 2, 3, 4, 5, 6} which represents
the outcome of a fair six-sided die roll. Since it is a fair die the probability of getting any
number is 1/6. Formally, the probability distribution evaluated at the event {1} representing
rolling a 1 is P({1}) = 1/6 and evaluated at the event {2} representing rolling a 2 is
P({2}) = 1/6, and so on. We also have P(X ) = 1 and P(∅) = 0. However, there are
many more events in this outcome space than the previous example, and to define the
probability distribution function we must specify the probability of each event. You might
notice that we can make use of second property to define the probability of any event in
the outcome space. In particular, the probability of any event E ⊂ X is the sum of the
probabilities of the events containing each of the outcomes in E . For example, if E = 1, 3, 5
then P(E) = P({1}) + P({3}) + P({5}) = 1/6 + 1/6 + 1/6 = 1/2. This trick of calculating
the probability of an event by summing the probabilities of the events containing each of
the outcomes in the event will be discussed further in the next section. �

You might notice that the notation of a distribution taking as input an event is intuitively
a bit misleading. For instance, from the previous dice roll example when we write P({1, 3, 5})
we do not mean to say that the probability of getting the numbers 1, 3, or 5 all at the
same time is 1/2. We only ever get one outcome from the dice roll. This outcome is of
course random, and so when we write P({1, 3, 5}) we mean the probability that the random
outcome produced by the dice roll is either 1, 3, or 5. As such, we use what is called a
random variable to represent the random outcome of an experiment. A random variable
is always associated with a probability distribution which describes the probability of the
random variable taking a value in a given event. For instance, if we let X be the random
variable representing the outcome of a die roll, then we write P(X ∈ {1, 3, 5}) = P({1, 3, 5})
to mean the probability that the random variable X takes on the value 1, 3, or 5.

For the purposes of this course we will think of random variables as elements of the
outcome space, and will write things like X ∈ {1, 2, 3, 4, 5, 6}4. We will use capital letters
to denote random variables, and the value of the random variable will be denoted by the
lowercase version of the letter. Some shorthand notation is often used to represent the
probability of a random variable taking on a value in an event. Let X be a random variable
representing the outcome of a die roll, and its associated probability distribution be P. We
have already seen that the probability of the random variable X being an odd number
is written as P(X ∈ {1, 3, 5}) which is defined as P({1, 3, 5}). If we are interested in the

4A random variable is actually a function (satisfying certain properties) from one outcome space to an-
other outcome space. Again, this is covered in measure theory and some details are explained in Appendix A.
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probability of X taking a value greater than 4, we can write P(X > 4) = P(X ∈ {5, 6}) =
P({5, 6}). Or, if we are interested in the probability of X taking the value 4, then we
can write P(X = 4) = P(X ∈ {4}) = P({4}). This last case will be especially important
to remember since writing X = 4 would seem to imply that the probability distribution
function can take as input an outcome instead of an event. This is not the case, since
P(X = 4) is defined as P({4}), which makes it clear that P always takes as input events
and never outcomes. Of course X ∈ {4} is to be interpreted as the event that the random
variable X is the outcome of 4, however, mathematically it is important because P is defined
to only take as input events.

Another note on notation is that X ∼ P is often used to denote that the random variable
X has the probability distribution P, or sometimes read as X is sampled according to P.

In the next section we will discuss a convenient way to define a probability distribution
when the outcome space is large or even infinite. However, to do this it will be useful to
distinguish between two types of random variables: discrete and continuous. A random
variable is discrete if it takes values from:

• a countable outcome space, or

• an uncountable outcome space, but there is a countable event that has a probability
of 1.

Some examples of the first case, when the outcome space is countable, are the random
variables representing the outcome of a die roll or a coin flip. To give some intuition for the
second case we give a more detailed examples.
Example 3.3: Suppose we are again working with a fair six-sided die roll. The outcome
space is X = {1, 2, 3, 4, 5, 6}, and the probability distribution P satisfies that P(X = 1) =
· · · = P(X = 6) = 1/6 since the die is fair. If we let X ∈ X be the random variable
representing the outcome of the die roll, then clearly X is a discrete random variable, since
outcome space X is finite and thus countable.

Now, suppose we change the outcome space to X = R. Here we should think of the
newly added outcomes as you would expect (ex: −5 ∈ R is the outcome the die roll was
-5, which is of course impossible, but we can speak about it). We need to define the
probability distribution P now. Naturally, we will keep P(X = 1) = · · · = P(X = 6) = 1/6,
which means P(X ∈ {1, 2, 3, 4, 5, 6}) = P(X = 1) + · · · + P(X = 6) = 1. This implies that
P(X ∈ {1, 2, 3, 4, 5, 6}c) = 1 − P(X ∈ {1, 2, 3, 4, 5, 6}) = 0 (i.e. the probability of the die
roll being any number other than 1, 2, 3, 4, 5, or 6 is 0). Notice that the event {1, 2,
3, 4, 5, 6} is countable since it has a finite cardinality |{1, 2, 3, 4, 5, 6}| = 6. Also, notice
that P({1, 2, 3, 4, 5, 6} = 1. Thus, the random variable X is still discrete, even though the
outcome space is uncountable. �

The above example demonstrates a general extension rule that you can always take a
random variable defined on a countable outcome space and extend it to an uncountable
outcome space, by setting the probability of the event containing all the new outcomes to
0. But, you can still reason about the probabilities as if the outcome space was countable,
since the probabilities of events from the original countable outcome space remain the same.
This extension can be used when we are working with features in machine learning that
belong to a countable set. For example, we can use a random variable to represent the
number of rooms feature of a house. The number of rooms feature is an element of the
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natural numbers, which is countable. However, for implementation reasons (which we will
see in later sections) we will often want to represent the feature as 1-dimensional vector
which is just a real number. Using the extension rule we can have a feature represented as
a real number, but still have the probability of the feature taking a specific value (ex: 3
rooms) be non-zero. This will be in stark contrast to continuous random variables, which
we define next.

A random variable is continuous if it takes values from:

• an uncountable outcome space, and the probability of any single outcome is 0.

The intuition behind the probability of a single outcome being 0 will be discussed in the
next section when we define probability density functions. For now, we will just give an
example of a continuous random variable.
Example 3.4: Let Z ∈ [0,∞) be a random variable representing the age of a house.
Here the outcome space [0,∞) is uncountable. Z is a continuous random variable if the
probability of the houses age z ∈ [0,∞) is zero. Formally, this means that P(Z = z) = 0
for all z ∈ [0,∞). Also, by the first property of the probability distribution we have
P(Z ∈ [0,∞)) = 15. It is also valid if the probability of the house being between 0 and 10
years is P(Z ∈ [0, 10]) = 0.5, since [0, 10] is not an event containing only a single number,
but instead is uncountably infinite. �

3.2 Defining Distributions
In this section we introduce some helpful functions, called probability mass functions and
probability density functions. These functions allow us to define the probability distribution
over any outcome space in a simple way. They are also very useful when calculating the
probabilities of random variables taking on values in events. It is convenient to separately
consider discrete and continuous random variables.

3.2.1 Probability mass functions for discrete random variables

Let X be a countable outcome space. A function p : X → [0, 1] is called a probability mass
function (pmf) if ∑

x∈X
p (x) = 1.

The probability of any event E ⊂ X is defined as

P(X ∈ E) def=
∑
x∈E

p(x).

5At this point a careful reader might wonder how this is possible. If the second property of a probability
distribution indicates that the probability of the union of disjoint events is the sum of their probabilies.
And, if you write [0,∞) as the union of all the numbers in [0,∞), wouldn’t the probability of [0,∞) just be
the sum

∑
z∈[0,∞) P(Z = z) = 0? Alas, the devil is in the details. It turns out that the second property of

a probability distribution only holds for countable unions of disjoint events, while the set [0,∞) cannot be
written as a countable union of numbers. The details of this, again, can be found in a course on measure
theory, and are not needed for these notes.
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For discrete random variables notice that P(X = x) = p(x) for each outcome x ∈ X , by
the above definition. The conditions on the pmf p ensure that we get valid probabilities,
including that P(X ∈ E) ∈ [0, 1] and that P(X ∈ X ) = 1.
Exercise 3.1: Prove that for any pmf p, defined above, we have P(X ∈ X ) = 1. �

Example 3.5: Consider a roll of a fair six-sided die (i.e. X = {1, 2, 3, 4, 5, 6}), then what
is the probability that the outcome is a number greater than 4?

First, because the die is fair, we know that p(x) = 1
6 for all x ∈ X . Now, let E ⊂ X be

the event that the outcome is greater than 4; i.e., E = {5, 6}. Thus,

P(X ∈ E) =
∑
x∈E

p(x) = 1
3 .

�

To specify P, therefore, we need to determine how to specify the pmf, (i.e. the probability
of each discrete outcome). The pmf is often specified as a table of probability values. For
example, to model the probability of a birthday for each day in the year, one could have
a table of 365 values between zero and one, as long as the probabilities sum to 1. These
probabilities could be computed from data about individuals birthdays, using counts for
each day and normalizing by the total number of people in the population to estimate the
probability of seeing a birthday on a given day. Such a table of values is very flexible,
allowing precise probability values to be specified for each outcome. There are, however, a
few useful named pmfs that have a (more restricted) functional form.

The Bernoulli distribution derives from the concept of a Bernoulli trial, an experiment
that has two possible outcomes: success and failure. In a Bernoulli trial, a success occurs
with probability α ∈ [0, 1] and, thus, failure occurs with probability 1 − α. A toss of a
coin (heads/tails), a basketball game (win/loss), or a roll of a die (even/odd) can all be
seen as Bernoulli trials. The outcome space X consists of two elements and we define the
probability of one of them as α. More specifically, X = {0, 1}, where 0 represents a failure
and 1 represents a success. The pmf is:

p(x) =
{
α x = success
1− α x = failure

where α ∈ [0, 1] is a parameter. We can compactly write the Bernoulli distribution as

p(x) = αx(1− α)1−x (3.1)

for x ∈ X . The Bernoulli distribution is often written Bernoulli(α). As we will see, a
common setting where we use the Bernoulli is for binary classification, say where we try to
predict whether a patient has the flu (outcome 0) or does not have the flu (outcome 1).

The discrete uniform distribution for discrete sample spaces is defined over a finite set
of outcomes each of which is equally likely to occur. Let X = {1, . . . , n}; then for all x ∈ X

p(x) = 1
n
.

The uniform distribution has a parameter n ∈ N that defines the size of the sample space
and the pmf. We refer to this distribution as Uniform(n). We will see later that the uniform
distribution can also be defined for continuous random variables.
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3.2.2 Probability density functions for continuous random variables

The treatment of continuous probability spaces is analogous to that of discrete spaces,
with probability density functions (pdfs) replacing probability mass functions and integrals
replacing sums. In defining pdfs, however, we will not be able to use tables of values, and
will be restricted to functional forms. The main reason for this difference stems from the
fact that it no longer makes sense to measure the probability of an event containing a single
outcome.

Consider the age of a randomly selected house which we represent as a number in [0,∞),
which recall is an uncountable outcome space. It would not make a lot of sense to ask the
probability that the age is exactly 3.14159625 years; realistically, the probability of such a
precise event is vanishingly small. In fact, the probability of seeing precisely that age is
zero, because the event {3.14159625} is an event containing a single outcome. Instead, we
will have to consider the probabilities of intervals, like [3, 4] or [3.14, 3.15].

Let X be an uncountable outcome space. A function p : X → [0,∞) is called a probability
density function (pdf) if

ˆ
X
p(x)dx = 1

where the integral is over the whole space X . For example, if X = [a, b], then
´
X p(x)dx =´ b

a p(x)dx. The probability of an event E ⊂ X is defined as

P(X ∈ E) def=
ˆ
E
p(x)dx.

Notice that the definition of the pdf is not restricted to having a range [0, 1], but rather
to [0,∞). For pmfs, the probability of an event with a single outcome {x} is the value of
the pmf at the sample point x (i.e. P(X = x) = P(X ∈ {x}) = p(x)). Since probability
distributions P are restricted to the range [0, 1], this implies pmfs must also be restricted
to that range. In contrast, the value of a pdf at point x is not a probability; it can actually
be greater than 1. Rather, p(x) reflects the density at x. While the density itself is not
a probability, it indicates how likely it is to see points near x when we integrate over a
small region around x. Also, the probability of an event containing a single outcome is zero,
because the integral over a single point is zero.

A natural confusion is how p can integrate to 1, but actually have values larger than 1.
The reason for this is that p(x) can be (much) larger than 1, as long as its only for a very
small interval. Consider the small interval E = [x, x+ ∆x], with probability

P(E) =
ˆ x+∆x

x
p(x)dx ≈ p(x)∆x.

A potentially large value of the density function is compensated for by the small interval
∆x to result in a number between 0 and 1. So, even if p(x) is a million, and the density
of points in the small interval or ball around x is large, the probability of an event must
still be ≤ 1. The density does indicate that there is high likelihood around that point. By
having a huge density around x, this suggests that the density for other points is zero or
near zero and that the pdf is extremely peaked around x.
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Figure 3.1: Selection of a random number (x) from the unit interval [0, 1].

Unlike pmfs, we cannot so easily define pdfs p to flexibly provide specific probabilities
for each outcome with a table of probabilities. Rather, for pdfs, we will usually use a known
pdf that satisfies the required properties. Further, unlike the discrete case, we will never
write P(X = x), because that would be zero. Rather, we will typically write P(X ∈ A),
such as by writing P(X ∈ [0.1, 0.2]) or P(X ≤ 5). We highlight three pdfs here, that will be
used throughout these notes.

The continuous uniform distribution is defined by an equal value of a probability density
function over a finite interval in R. Thus, for X = [a, b] the uniform probability density
function ∀x ∈ [a, b] is defined as

p(x) def= 1
b− a

.

The continuous uniform distribution has two parameters a, b ∈ R. We will refer to this
distribution as Uniform(a, b).

The Gaussian distribution or normal distribution is one of the most frequently used
probability distributions. It has outcome space X = R, and two parameters, µ ∈ R and
σ > 0. The pdf is

p(x) = 1√
2πσ2

e−
1

2σ2 (x−µ)2

As we will discuss next, for a random variable that is Gaussian distributed, the parameter
µ is the mean or expected value and σ2 is the variance. We will refer to this distribution as
Gaussian(µ, σ2) or N (µ, σ2). When the mean is zero, and the variance is 1 (unit variance),
this Gaussian is called the standard normal. This specific Gaussian has a name because it
is so frequently used.

The Laplace distribution is similar to the Gaussian, but is more peaked around the
mean. It also has outcome space X = R, and two parameters µ ∈ R and b > 0. The pdf is

p(x) = 1
2be
− 1
b
|x−µ|

We will refer to this distribution as Laplace(µ, b).
Example 3.6: Consider selecting a number between 0 and 1 uniformly randomly (shown
in Fig. 3.1). What is the probability that the number is greater than or equal to 3

4 or less
than and equal to 1

4?
We know that X = [0, 1]. The distribution is defined by the uniform pdf, p(x) = 1

b−a = 1
where a = 0, b = 1 define the interval for the outcome space. We define the event of interest
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as E =
[
0, 1

4

]
∪
[

3
4 , 1
]
and calculate its probability as

P(E) =
ˆ 1/4

0
p(x)dx+

ˆ 1

3/4
p(x)dx . p(x) = 1

=
(1

4 − 0
)

+
(

1− 3
4

)
= 1

2 .

Note that since the probability of an event containing a single outcome is 0, there is no
difference in integration if we consider open or closed intervals (since for instance [0, 1

4 ] =
[0, 1

4) ∪ {1
4}). Therefore, the probability of [0, 1

4) ∪ [3
4 , 1] would still be 1

2 . �

3.3 Multivariate Random Variables
The examples so far have dealt with, what are sometimes called, univariate random vari-
ables, because they only have one random variable. Sometimes it is useful to talk about
the probability of multiple random variables, which is what multi-variate random variables
allow us to do. A multivariate random variable is a tuple of random variables. Much of the
above development extends to multivariate random variables because the definition of out-
come spaces and probability distributions was introduced in a general way. In this section,
we discuss several new notions that only arise when there are multiple random variables, in-
cluding joint distributions, conditional distributions, marginal distributions and dependence
between random variables.

To build some intuition, let us start with two random variables X and Y with outcome
spaces X and Y respectively. The tuple containing the two random variables is called a
multi-variate random variable, and we will denote it as Z = (X,Y ). The outcome space
of Z is Z = X × Y, which is the Cartesian product of the outcome spaces of X and Y .
Since Z is a random variable, it has a probability distribution P, which is called the joint
distribution of X and Y .
Example 3.7: Consider the random variables X ∈ {0, 1} and Y ∈ {0, 1} where X is the
outcome of a coin flip and Y is the outcome of a different coin flip. Then Z = (X,Y ) is
a multivariate random variable with outcome space Z = {0, 1} × {0, 1}. It represents the
outcome of two coin flips. �

Example 3.8: Consider the random variables X ∈ N and Y ∈ [0,∞) where X represents
the number of rooms in a house and Y is the age of a house. Then Z = (X,Y ) is a
multivariate random variable with outcome space Z = N× [0,∞). It represents the number
of rooms and the age of a house. �

If X and Y are discrete, the random variable Z is also considered discrete. Since Z is a
discrete random variable its distribution is defined through a joint pmf p : Z → [0, 1]. The
probability of any event E ⊂ Z is

P(Z ∈ E) =
∑
z∈E

p(z).
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Y
no arthritis arthritis

X
young p(young, no arthritis) = 1/2 p(young, arthritis) = 1/100
old p(old,no arthritis) = 1/10 p(old, arthritis) = 39/100

Table 3.1: The joint pmf p for random variables X and Y .

Example 3.9: Consider an example where X ∈ X = {young, old} and Y ∈ Y =
{no arthritis, arthritis}. Then Z = (X,Y ) is a multivariate random variable with outcome
space Z = X×Y = {(young,no arthritis), (young, arthritis), (old, no arthritis), (old, arthritis)}.
Suppose that the joint6 pmf is7

p(x, y) =



1/2 if x = young, y = no arthritis
1/100 if x = young, y = arthritis
1/10 if x = old, y = no arthritis
39/100 if x = old, y = arthritis.

To build intuition about the joint pmf it can be useful to represent it with a table as shown
in Table 3.1. Notice that the joint pmf sums to 1 over all possible outcomes, as it should
(i.e. ∑z∈Z p(z) = 1). However, the rows do not sum to 1 nor do the columns.

Another useful way to visualize the joint pmf is to represent its value for each outcome
(x, y) ∈ Z as an area in a two-dimensional square with unit area, as shown in Fig. 3.2. We
can see that the area taken up by the outcome (young,no arthritis) is 1/2, which is a much
larger area than the area taken up by (young, arthritis) which is only 1/100. The benefit of
working with discrete random variables is that the pmf can be interpreted as the giving
the probability of an outcome, since P(Z = z) = p(z) for any z ∈ Z. Thus, the regions in
Fig. 3.2 are exactly the probabilities of each outcome (x, y) ∈ Z8. �

If instead X and Y are continuous, the random variable Z is also considered continuous
and its distribution is defined through a joint pdf p : Z → [0,∞). The probability of any
event E ⊂ Z is

P(Z ∈ E) def=
ˆ
E
p(z)dz.

There is a common notational convention that is used when dealing with multivariate
random variables and the event E ⊂ Z has a specific form. In particular, if E = Ex × Ey
where Ex ⊂ X and Ey ⊂ Y, then we can write P(Z ∈ E) = P(X ∈ Ex, Y ∈ Ey). Intuitively,
this means that E is the event that considers every possible pair of outcomes (x, y) where
x ∈ Ex and y ∈ Ey. The notation P(X ∈ Ex, Y ∈ Ey) should then be read as the probability
that X is in Ex and Y is in Ey. A useful property of E being of the form Ex×Ey is that the

6Pun intended.
7This is synthetic data and does not represent any real data.
8Remember that when we say "the probability of an outcome" we really mean the probability of the event

that contains that outcome.
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Figure 3.2: The area of each rectangle represents the value of the joint pmf p(x, y) for each
outcome (x, y) ∈ Z.

probability of this event can be written as

P(X ∈ Ex, Y ∈ Ey) = P(Z ∈ E) =


∑
z∈E p(z) = ∑

x∈Ex
∑
y∈Ey p(x, y) if Z is discrete

´
E p(z)dz =

´
Ex

´
Ey p(x, y)dydx if Z is continuous.

In these notes we will almost always work with events E that are of the form Ex × Ey.
Example 3.10: We continue with the previous arthritis example. Suppose we are
interested in the probability that a person is young X = young and either has or does
not have arthritis Y ∈ {no arthritis, arthritis}. Notice that this event is of the form E =
{young} × {no arthritis, arthritis} = {(young,no arthritis), (young, arthritis)}. Thus, to
calculate the probability of this event we can write

P(X = young, Y ∈ {no arthritis, arthritis}) =
∑

x∈{young}

∑
y∈{no arthritis,arthritis}

p(x, y)

= p(young,no arthritis) + p(young, arthritis)
= 1/2 + 1/100 = 51/100.

�

So far we have only discussed multivariate random variables that are tuples of two
random variables, but we can generalize this to tuples of any number of random variables
and all of the above concepts extend in a straightforward way. In particular, if we have a
multivariate random variable X = (X1, . . . , Xd) with outcome space X = X1×· · ·×Xd and
pmf of pdf p (depending on if X is discrete or continuous), then the probability of some
event E ⊂ X is

P(X ∈ E) =


∑
x∈E p(x) if X is discrete
´
E p(x)dx if X is continuous.

37



If E = E1 × · · · × Ed where Ei ⊂ Xi for all i ∈ {1, . . . , d}, then we can write P(X ∈ E) =
P(X1 ∈ E1, . . . , Xd ∈ Ed) and the probability of event E is

P(X1 ∈ E1, . . . , Xd ∈ Ed) =


∑

x1∈E1

· · ·
∑

xd∈Ed
p(x1, . . . , xd) if X is discrete

´
E1

· · ·
´
Ed
p(x1, . . . , xd)dx1 · · · dxd if X is continuous.

3.3.1 Marginal Distributions

Given a joint distribution over random variables, one would hope that we could extract
more specific probabilities, like the distribution over just one of those variables, which is
called the marginal distribution. As with all the probability distributions we have seen
so far, the marginal distribution can be discrete or continuous and is defined through the
marginal pmf or pdf respectively. Consider again the case where Z = (X,Y ) ∈ X ×Y = Z
is a multivariate random variable with joint pmf or pdf p (depending on if Z is discrete or
continuous). The marginal pmf or pdf of X is defined for any x ∈ X as

pX(x) def=


∑
y∈Y p(x, y) if X,Y are discrete
´
Y p(x, y)dy if X,Y are continuous.

Roughly speaking, the marginal distribution of X is the distribution of X if we ignore
the value of Y . Then, the marginal probability distribution of X is defined for any event
EX ⊂ X as

PX(X ∈ EX) =


∑
x∈EX pX(x) if X is discrete
´
EX pX(x)dx if X is continuous.

The exact same definitions apply for the marginal distribution of Y .
Example 3.11: We continue with the arthritis example. Suppose we want to calculate
the probability that a person is young, regardless of whether they have arthritis or not. To
calculate this probability we can use the marginal distribution of X as follows

PX(X = young) = pX(young)
=
∑
y∈Y

p(young, y)

= p(young,no arthritis) + p(young, arthritis)
= 1/2 + 1/100 = 51/100.

The careful reader might notice that this is the same probability as in Example 3.10. This
is not a coincidence. A young person either does or does not have arthritis, so summing up
over these two possible cases factors out that variable. Notice that this is exactly what was
done in Example 3.10, since the event for Y was the whole outcome space EY = Y.

To continue building our intuition we can again use the idea of areas as probabilities
(that we introduced in Fig. 3.2) to visualize the marginal distribution of X. To get the
probability of X = young we can sum up all the areas that correspond to the outcome
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Figure 3.3: The orange area represents the value pX(young) = 51/100, while the green area
represents the value pX(old) = 49/100.

(young, y) for all y ∈ Y. This is represented as the orange region in the figure, and we can
see that the area of this region is 51/100, matching our calculation above. We can also use
this approach to quickly calculate the probability of X = old, which is just the sum of all
the areas corresponding to the outcome (old, y) for all y ∈ Y. The area of this region is
49/100. The calculation P(X = old) = 1 − P(X = young) = 49/100 shows that our visual
approach is indeed correct.

We could repeat the same process to calculate the marginal distribution of Y and get
the probability of Y = no arthritis or Y = arthritis. �

In general, if we have a multivariate random variable X = (X1, X2, . . . , Xd) with out-
come space X = X1 × · · · × Xd and joint pmf or pdf p (depending on if X is discrete or
continuous), then the marginal pmf or pdf of Xi is defined for any xi ∈ Xi, i ∈ {1, . . . , n} as

pXi(xi)
def=


∑

x1∈X1

· · ·
∑

xi−1∈Xi−1

∑
xi+1∈Xi+1

· · ·
∑

xd∈Xd
p (x1, . . . , xd) if X is discrete

´
X1

· · ·
´
Xi−1

´
Xi+1

· · ·
´
Xd
p (x1, . . . , xd) dx1 . . . dxi−1dxi+1 . . . dxd if X is continuous.

3.3.2 Conditional Probability and Independence

In many scenarios, we are interested in the probability of one random variable given that an-
other random variable takes on a specific value. This leads us to the concept of a conditional
probability distribution. Just as with joint and marginal distributions, conditional distribu-
tions are defined through the conditional pmf for discrete variables and the conditional pdf
for continuous variables.

Suppose we have two random variables X and Y with a joint pmf or pdf p(x, y) and
marginal pmfs or pdfs pX(x) and pY (y). For discrete or continuous random variables, the
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conditional pmf or pdf of Y given X = x is calculated as

pY |X(y|x) def= p(x, y)
pX(x) for all y ∈ Y such that pX(x) > 0.

When we condition on X = x, the conditional pmf or pdf pY |X(y|x) is a function solely of
y, with x fixed. As before, the conditional distribution of Y given X = x is defined for any
event EY ⊂ Y through the conditional pmf or pdf as

PY |X(Y ∈ EY |X = x) def=


∑
y∈EY pY |X(y|x) if Y is discrete
´
EY pY |X(y|x)dy if Y is continuous.

All of the above also applies to the conditional distribution of X given Y = y.
Example 3.12: Continuing with the arthritis example, suppose we want to find the
probability that a person has arthritis given that they are young.

First, recall the joint probabilities:

p(young,no arthritis) = 1/2, p(young, arthritis) = 1/100.

We have already calculated the marginal pmf of X at X = young in Example 3.11 to be

pX(young) = 51/100.

Thus, the conditional probability of Y given X = young is

PY |X(Y = arthritis|X = young) = pY |X(arthritis|young)

= p(young, arthritis)
pX(young) =

1/100
51/100

= 1
51 ,

PY |X(Y = no arthritis|X = young) = pY |X(no arthritis|young)

= p(young,no arthritis)
pX(young) =

1/2
51/100

= 50
51 .

We can visuallize this again using the idea of areas as probabilities, as shown in Fig. 3.4.
The shape on the right represents all the area that remains when conditioning onX = young.
We can then see that for this shape, the area corresponding to Y = arthritis is 1/51, while
the area corresponding to Y = no arthritis is 50/51. �

Product Rule

The product rule allows us to express the joint distribution of two or more random vari-
ables in terms of their marginal and conditional distributions. Specifically, for two random
variables X and Y , the joint pmf or pdf can be written as the product of the marginal pmf
or pdf of one variable and the conditional pmf or pdf of the other variable given the first.

p(x, y) = pX(x) · pY |X(y|x).
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Figure 3.4: The shape on the right represenets all the area that remains when conditioning
on X = young.

This rule generalizes to more than two random variables. For a multivariate random
variable X = (X1, X2, . . . , Xd), the joint pmf/pdf can be expressed as

p(x1, x2, . . . , xd) = p(x1) · p(x2|x1) · p(x3|x1, x2) · · · p(xd|x1, x2, . . . , xd−1).

Example 3.13: Using the arthritis example, the joint pmf can be expressed using the
product rule. For instance,

p(young, arthritis) = pX(young) · pY |X(arthritis|young)
= 51/100 · 1/51

= 1/100,

which matches the original joint pmf. �

Bayes’ Rule

Bayes’ rule provides a way to invert conditional pmfs or pdfs, allowing us to express
pX|Y (x|y) in terms of pY |X(y|x) and the marginals.

pX|Y (x|y) =
pY |X(y|x) · pX(x)

pY (y) .

Example 3.14: Suppose we want to find the probability that a person is young given that
they have arthritis. Using Bayes’ rule:

PX|Y (X = young|Y = arthritis) = pX|Y (young|arthritis)

=
pY |X(arthritis|young) · pX(young)

pY (arthritis) .
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We have already the terms in the numerator in previous examples, giving us:

pY |X(arthritis|young) · pX(young) = 1
51 ·

51
100 = 1

100 ,

From the denominator we have:

pY (arthritis) = p(young, arthritis) + p(old, arthritis)
= 1/100 + 39/100

= 40/100.

Thus,

P(X = young|Y = arthritis) =
1/51 · 51/100

40/100
=

1/100
40/100

= 1
40 .

�

Independence

Two random variables X and Y are said to be independent if the occurrence of one does
not affect the probability distribution of the other. Formally, X and Y are independent if

pY |X(y|x) = pY (y) for all x ∈ X , y ∈ Y.

Alternatively, by the product rule, independence can be expressed as

p(x, y) = pY |X(y|x) · pX(x) = pY (y) · pX(x) for all x ∈ X , y ∈ Y.

Similarly, for distributions, X and Y are independent if

P(Y ∈ EY , X ∈ EX) = P(Y ∈ EY ) · P(X ∈ EX) for all events EX ⊂ X , EY ⊂ Y.

Independence is critical in machine learning. If two variables are independent, this has
important modeling implications. For example, if feature X and target Y are independent,
then X is not useful for predicting Y and so is not a useful feature.
Example 3.15: Consider two independent coin flips represented by random variables X
and Y , each taking values in {0, 1} with pX(0) = pX(1) = 1/2 and pY (0) = pY (1) = 1/2.
Since the coin flips are independent, the joint pmf is

p(x, y) = pX(x) · pY (y) = 1
2 ·

1
2 = 1

4 for all x, y ∈ {0, 1}.

Thus, knowing the outcome of X does not change the probability distribution of Y , and
vice versa. �

Example 3.16: In contrast, consider the arthritis example where X represents age and Y
represents arthritis status. The joint pmf does not factor into the product of the marginals:

p(young, arthritis) = 1/100 6= pX(young) · pY (arthritis) = 51/100 · 40/100 = 2040/10000.
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This inequality indicates that X and Y are dependent; knowing a person’s age affects the
probability of having arthritis. �

Notational Remark: For joint, marginal, and conditional distributions, probability
mass functions (pmfs) and probability density functions (pdfs), the subscripts are sometimes
omitted when the context makes it clear which distribution is being referred to. For example,
instead of writing pY |X(y|x) for the conditional pmf, we may simply write pY |X(y|x) when
it’s clear that X and Y are the variables in question. Similarly, pX(x) and pY (y) may be
written as p(x) and p(y) respectively when there is no ambiguity.

Mixed Multivariate Random Variables

In some cases, a multivariate random variable consists of both continuous and discrete
components. For example, consider a random variable X that is continuous and a random
variable Y that is discrete. In such scenarios, p is neither a probability mass function (pmf)
nor a probability density function (pdf). Instead, to calculate probabilities involving both
X and Y , we use the product rule, expressing p as the product of the marginal pdf of X
and the conditional pmf of Y given X:

p(x, y) = pY |X(y|x) · pX(x),

where pX(x) is a pdf and pY |X(y|x) is a pmf.
Example 3.17: [Probability of wine] Consider a scenario where X ∈ [0, 900] represents
the amount of a chemical in a wine and Y ∈ {0, 1} represents whether the wine is Barolo
(Y = 1) or not (Y = 0). Assume that the amount of chemical X is uniformly distributed
over [0, 900], and the probability that the wine is Barolo given X = x follows a Bernoulli
distribution with parameter x/900. This means that pX is a marginal pdf defined as

pX(x) = 1/900 for x ∈ [0, 900],

and pY |X is a conditional pmf defined as

pY |X(y|x) =


x/900 if y = 1,

1− x/900 if y = 0.

To calculate the probability that X ∈ [0, 50] and Y = 1, we compute:

P(X ∈ [0, 50], Y = 1) =
ˆ 50

0

 ∑
y∈{1}

p(x, y)

 dx

=
ˆ 50

0
p(1|x) · p(x) dx

=
ˆ 50

0

1
900 ·

x

900 dx

= 1
810000

x2

2

∣∣∣∣50

0

= 1
810000 ·

2500
2 = 1

648 .
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Thus, the probability that the amount of chemical X is between 0 and 50 and the wine is
Barolo (Y = 1) is 1

648 . �

3.4 Representing Features, Labels, and Datasets as Random
Variables

The concepts from the previous sections have now equipped us with the necessary tools
to represent the features, labels, and datasets that we encounter in machine learning as
random variables. In particular, we can represent a dataset of size n ∈ N as the following
multivariate random variable

D = (Z1, . . . , Zn) ∈ Zn.

Each Zi represents a feature-label pair, where Zi = (Xi, Yi) ∈ X × Y = Z. The random
variable Xi ∈ Rd is often called the feature vector and denoted with a boldface to indicate
that it is a vector. While Yi ∈ Y is the label.

As we have learned, each random variable is associated with a probability distribution.
We will use PD the represent the probability distribution of the dataset D, and PZi to
represent the marginal probability distribution of the feature-label pair Zi.

In supervised learning, the following assumptions are made:

1. (Xi, Yi) are independent for all i ∈ {1, . . . , n}.

2. PZi = · · · = PZn = PZ . Which means that all the feature-label pairs have the same
distribution, which we denote with PZ .

These two assumptions together are often referred to as the i.i.d. assumption, which stands
for independent and identically distributed. The i.i.d assumption implies that the proba-
bility of any event E = E1 × · · · × En ∈ Zn is

PD(D ∈ E) = PD(Z1 ∈ E1, . . . , Zn ∈ En) = PZ1(Z1 ∈ E1) · · ·PZn(Zn ∈ En)
= PZ(Z ∈ E1) · · ·PZ(Z ∈ En).

The first equality holds since the feature-label pairs are independent, and the second equality
holds since they are identically distributed.

All of the above will often be communicated in a more concise way by writing

D = {(X1, Y1), . . . , (Xn, Yn)} ∈ (X × Y)n

where (Xi, Yi) ∼ PX,Y are independent for all i ∈ {1, . . . , n}. This is to be read as “D
contains n independent samples of feature-label pairs (Xi, Yi), each drawn from the same
distribution PX,Y ”.

3.5 Functions of Random Variables
A function of a random variable is itself a random variable. Let X ∈ X be a random variable
with pmf or pdf p and let f : X → Y be a function. Then, f(X) is a random variable with
outcome space Y.
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Example 3.18: [Fair six-sided die] Let X ∈ X be a random variable representing the
outcome of a fair six-sided die. It has outcome space X = {1, 2, 3, 4, 5, 6} and pmf p(x) = 1/6
for all x ∈ X . Let f(X) = X2 be a function of X, which is also a random variable. The
outcome space of f(X) is {1, 4, 9, 16, 25, 36}. Sometimes a function of a random variable is
assigned a new symbol, such as Y = f(X). The pmf of Y is pY (y) = pf(X)(y) = 1/6 for all
y ∈ {1, 4, 9, 16, 25, 36}. In this case pY (x2) = p(x) for all x ∈ {1, 2, 3, 4, 5, 6}. However, this
is not always the case, as we will see in the next example. �

Example 3.19: [Payout from a slot machine] Let X ∈ X be a random variable representing
the payout from a slot machine. It has an outcome space X = [−10, 10] and pdf p(x) = 1/20
for all x ∈ X . Let Y = f(X) = X2 be a function of X. The outcome space of Y is [0, 100]
and the pmf of Y is pY (y) = pf(X)(y) = 1

20√y for all y ∈ [0, 100]. Notice that pY (x2) 6= p(x)
for all x ∈ [−10, 10]. �

In general the pmf or pdf of f(X) is not simply p(x) as we have seen in the previous
example. Fortunately, in these notes we will mainly be interested in the expected value of
functions of random variables (discussed in Section 3.6), in which case working with p(x)
will turn out to be sufficient. As such, we avoid discussing how to calculate the pmf or pdf
of f(X) in these notes.

3.5.1 The Predictor and Learner are Functions of Random Variables

In Chapter 2 we discussed how the predictor and learner are functions. And in Section 3.4 we
discussed how datasets and feature-label pairs are random variables. As such, the predictor
and learner are functions of random variables and thus are themselves random variables.
Example 3.20: [Predictor] Let f : X → Y be a predictor, where X is the set of feature
vectors and Y is the set of labels. Let X ∈ X be a random variable representing a feature
vector. Then f(X) is a random variable representing the predicted label and has outcome
space Y. �

Example 3.21: [Learner] Let A : (X × Y)n → {f |f : X → Y} = F be a learner, where
(X × Y)n is the set of datasets and F is the set of predictors. Let D ∈ (X × Y)n be a
random variable representing a dataset. Then A(D) is a random variable representing the
learned predictor and has outcome space F .

Notice that in this example the random variable A(D) has an outcome space that is a
set of functions F . This is perfectly fine, since random variables can have outcome spaces
that are sets of any objects. �

The reason it is important to think of the predictor and learner as random variables is that
it allows us to use the tools of probability theory to reason about them. In particular, we
will be able to talk about things like the probability that predictor f outputs some label y
or the probability that learner A outputs some predictor f .

3.6 Expectation and Variance
The expected value, or mean, of a random variable X ∈ X is its average value if you sample
according to its distribution infinitely many times. It is not necessarily the value we expect

45



to see most frequently, that is called the mode. To calculate the expected value of a random
variable, the random variable must have an outcome space X ⊂ R that only contains
numbers. The reason for this is that if X = {cat,dog}, it is not clear how to calculate the
average of a cat and a dog.

More precisely, if X ∈ X ⊂ R is a random variable with pmf or pdf p, then the expected
value of X is

E [X] def=


∑
x∈X xp(x) if X is discrete
´
X xp(x)dx if X is continuous

Example 3.22: [Fair six-sided die] Let X ∈ X be a random variable representing the
outcome of a fair six-sided die. It has outcome space X = {1, 2, 3, 4, 5, 6} and pmf p(x) = 1/6
for all x ∈ X . The expected value of X is

E [X] =
∑
x∈X

x · p(x) = 1 · 1
6 + 2 · 1

6 + 3 · 1
6 + 4 · 1

6 + 5 · 1
6 + 6 · 1

6 = 3.5.

Thus, the expected value of a fair six-sided die is 3.5. Notice how the expected value is
not a value that the die can actually take on, but is the average value if you roll the die
infinitely many times. �

Example 3.23: [Unfair coin] Let X ∈ X be a random variable representing the outcome
of an unfair coin flip, with distribution Bernoilli(α). It has outcome space X = {0, 1} and
pmf p(x) = αx(1− α)1−x for all x ∈ X . The expected value of X is

E [X] =
∑
x∈X

x · p(x) = 0 · α0(1− α)1 + 1 · α1(1− α)0 = α.

Thus, the expected value of an unfair coin flip with probability α of landing heads is α.
Notice again how the expected value is not a value that the coin can actually take on, but
is the average value if you flip the coin infinitely many times. �

Example 3.24: [Normal distribution] Let X ∈ X be a random variable representing a
Normal distribution with mean µ and variance σ2. It has outcome space X = R and pdf
p(x) = 1√

2πσ2 exp
(
− (x−µ)2

2σ2

)
. The expected value of X is

E [X] =
ˆ ∞
−∞

x · p(x) dx =
ˆ ∞
−∞

x · 1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
dx = µ.

Thus, the naming convention of calling the parameter µ the mean of the Normal distribution
is justified. The last equality above is not trivial to show, thus we will not prove it here. �

3.6.1 Expectation of Functions of Random Variables

In general, we may be interested in the expected value of functions of random variables. If
X is a random variable and f : X → R is a function, then the expected value of f(X) is

E [f(X)] def=


∑
x∈X f(x)p(x) if X is discrete
´
X f(x)p(x)dx if X is continuous.
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Notice that it was important that the codomain of f is R so that we can calculate the
average of the values that f takes on.
Example 3.25: [Payout from a slot machine] Let X ∈ X be a random variable representing
the payout from a slot machine. It has an outcome space X = [−10, 10] and pdf p(x) = 1/20
for all x ∈ X . Let f(X) = X2 be a function of X. The expected value of f(X) is

E [f(X)] =
ˆ
X
f(x)p(x)dx =

ˆ 10

−10
x2 · 1

20 dx = 1
20
x3

3

∣∣∣∣10

−10
= 1

20

(1000
3 − −1000

3

)
= 2000

60 .

In Example 3.18 we said that sometimes we represent a function of a random variable with
a new symbol, such as Y = f(X). Using this notation one should wonder why the expected
value of Y was not calculated by using its pdf pY (y) = 1

20√y . First, let us calculate the
expected value of Y using its pdf:

E [Y ] =
ˆ
Y
y · pY (y)dy =

ˆ 100

0
y · 1

20√y dy = 1
20

2
3 · y

3/2
∣∣∣∣100

0
= 2000

60 .

We see that calculating the expected value of Y using its pdf gives the same result as
calculating the expected value of f(X) using the pdf of X. This is a result that holds in
general. Often it is hard to calculate the pdf of a function of a random variable; luckily,
the expected value can be calculated using the pdf of the original random variable. This is
a useful property of expected values, and justifies why we often only need to know the pdf
of the original random variable. �

Example 3.26: [Fair six-sided die] Let X ∈ X be a random variable representing the
outcome of a fair six-sided die. It has outcome space X = {1, 2, 3, 4, 5, 6} and pmf p(x) = 1/6
for all x ∈ X . Let f(X) = X2 be a function of X. The expected value of f(X) is

E [f(X)] =
∑
x∈X

f(x) · p(x) = 12 · 1
6 + 22 · 1

6 + 32 · 1
6 + 42 · 1

6 + 52 · 1
6 + 62 · 1

6 = 15.17.

Thus, the expected value of the square of a fair six-sided die is 15.17. �

3.6.2 Variance of Random Variables

There is a special function of a random variable that is often of interest, the variance.
Roughly speaking, it measures how much the values of a random variable deviate from the
expected value. The variance of a random variable X is defined as

Var [X] def= E
[
(X − E [X])2

]
= E

[
X2
]
− (E [X])2 .

The last equality is a useful way to calculate the variance, as it only requires the expected
value of X and the expected value of X2. It can be shown by expanding the definition of
the variance and using the properties in Section 3.7.
Example 3.27: [Unfair coin] Let X ∈ X be a random variable representing the outcome
of an unfair coin flip, with distribution Bernoilli(α). It has outcome space X = {0, 1} and
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pmf p(x) = αx(1− α)1−x for all x ∈ X . In Example 3.23 we showed the expected value of
X is E [X] = α. We can calculate the variance of X using the defintion of variance as

Var [X] = E
[
(X − E [X])2

]
=
∑
x∈X

(x− E[X])2 · p(x)

= (0− α)2 · α0(1− α)1 + (1− α)2 · α1(1− α)0

= α2(1− α) + (1− α)2α = α(1− α).

We can also calculate the variance using the formula Var [X] = E
[
X2]− (E [X])2.

Var [X] = E
[
X2
]
− (E [X])2 = 02 · α0(1− α)1 + 12 · α1(1− α)0 − α2 = α− α2 = α(1− α).

As expected, the two methods give the same result. Thus, the variance of an unfair coin
flip with probability α of landing heads is α(1− α). �

Example 3.28: [Normal distribution] Let X ∈ X be a random variable representing a
Normal distribution with mean µ and variance σ2. It has outcome space X = R and pdf
p(x) = 1√

2πσ2 exp
(
− (x−µ)2

2σ2

)
. We can calculate the variance of X using the defintion of

variance as

Var [X] = E
[
(X − E [X])2

]
=
ˆ ∞
−∞

(x− µ)2 · p(x) dx

=
ˆ ∞
−∞

(x− µ)2 · 1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
dx. = σ2.

The last equality is not trivial to show, thus we will not prove it here. The important take
away is that the variance of a Normal distribution is equal to its variance parameter σ2. �

3.6.3 Expectation of Multivariate Random Variables

All of the above can be extended to multivariate random variables. We cover the case of
two random variables, but the extension to more random variables follows a similar pattern.
Let X ∈ X , Y ∈ Y be random variables with joint pmf or pdf p(x, y). Let f : X × Y → R
be a function. Then the expected value of f(X,Y ) is

E [f(X,Y )] def=


∑
x∈X

∑
y∈Y f(x, y) · p(x, y) if X and Y are discrete

´
X
´
Y f(x, y) · p(x, y) dx dy if X and Y are continuous.

Example 3.29: [Two fair six-sided dice] Let X ∈ X , Y ∈ Y be random variables rep-
resenting the outcomes of two fair six-sided dice. They have outcome spaces X = Y =
{1, 2, 3, 4, 5, 6} and joint pmf p(x, y) = 1/36 for all x, y ∈ X . Let f(X,Y ) = X + Y be a
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function of X and Y . The expected value of f(X,Y ) is

E [f(X,Y )] =
∑
x∈X

∑
y∈Y

f(x, y) · p(x, y) =
∑
x∈X

∑
y∈Y

(x+ y) · 1
36

=
∑
x∈X

∑
y∈Y

x · 1
36 +

∑
x∈X

∑
y∈Y

y · 1
36 = 7.

Thus, the expected value of the sum of two fair six-sided dice is 7. �

If X is continuours and Y is discrete, or vice versa, then we must use the product rule
to express p(x, y) = pX(x)pY |X(y|x). In these two cases the expected value of f(X,Y ) is

E [f(X,Y )] def=


∑
x∈X

∑
y∈Y f(x, y)pY |X(y|x)pX(x) if X is discrete and Y is continuous

´
X
´
Y f(x, y)pY |X(y|x)pX(x) dx dy if X is continuous and Y is discrete.

Example 3.30: [Expected loss of predicting wine] Consider the same scenario as in Exam-
ple 3.17, where X ∈ [0, 900] represents the amount of a chemical in a wine and Y ∈ {0, 1}
represents whether the wine is Barolo (Y = 1) or not (Y = 0). Assume that X is uniformly
distributed over [0, 900], and the probability that the wine is Barolo given X = x follows a
Bernoulli distribution with parameter x/900.

Let f(X) = X/900, and define `(f(X), Y ) = (f(X)−Y )2. We aim to compute E[`(f(X), Y )].

E[`(f(X), Y )] =
ˆ
X

∑
y∈Y

`(f(x), y)p(y|x)p(x) dx

=
ˆ 900

0

 ∑
y∈{0,1}

(
x

900 − y
)2
p(y|x)

 p(x) dx

=
ˆ 900

0

((
x

900 − 0
)2 (

1− x

900

)
+
(
x

900 − 1
)2 ( x

900

)) 1
900 dx

= 1
900

ˆ 900

0

x

900

(
1− x

900

)
dx

= 1
9002

ˆ 900

0
x− 1

9003

ˆ 900

0
x2dx

= 1
9002

x2

2

∣∣∣∣900

0
− 1

9003
x3

3

∣∣∣∣900

0

= 1
2 −

1
3 = 1

6 .

We will see this type of calcultation again in the next chapter. To slightly foreshadow what
is to come, the function f can be thought as a predictor while ` will be something we call a
loss function, which measures how close the prediction f(X) is to the true label Y . As such,
the expectation we calculated is the expected loss of the predictor f . If we had different
predictors, we could compare them by calculating their expected loss and picking the one
with the lowest expected loss. �
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3.6.4 Conditional Expectation

The expected value of a random variable given some information is called the conditional
expectation. Let X ∈ X and Y ∈ Y be random variables with the conditional pmf or pdf
of Y given X = x denoted by p(y|x). If f : Y → R is a function of Y , then the conditional
expectation of f(Y ) given X = x for some x ∈ X is

E [f(Y )|X = x] def=


∑
y∈Y f(y)p(y|x) if Y is discrete
´
Y f(y)p(y|x) dy if Y is continuous.

Example 3.31: [Wine depending on the amount of a chemical] We continue with the wine
example from Example 3.17. Suppose we are interested in what type of wine we should
expect given that the amount of the chemical is x = 900. We would then choose f(Y ) = Y
to just be the identity function and calculate E [f(Y )|X = 900] as follows

E [f(Y )|X = 900] =
∑
y∈Y

yp(y|900) = 0 · p(0|900) + 1 · p(1|900) = 1 · 900/900 = 1.

This means that given that the amount of the chemical is 900, we should expect the wine
to be Barolo (represented as Y = 1). Intuitively, this makes sense since (by the definition
of Bernoilli(900/900)) with probability 1 the wine is Barolo given that the amount of the
chemical is 900. �

Example 3.32: [Coin flip depending on a dice roll] Let X ∈ {1, 2, 3, 4, 5, 6} be a random
variable representing the outcome of a fair six-sided die, and let Y ∈ {0, 1} be a random
variable representing the outcome of an unfair coin flip. Assume the conditional distribution
of Y given X = x is Bernoilli(x2/36). Let f(Y ) = 10Y . Suppose we were interested in the
conditional expectation of f(Y ) given a three was rolled. This can be calculated as

E [f(Y )|X = 3] =
∑
y∈Y

f(y)p(y|3) = 10 · 0 ·
(

1− 32

36

)
+ 10 · 1 · 32

36 = 10 · 32

36 = 15
6

�

3.7 Properties of expectations and variances
We state some useful properties of expectations and variances, without proof. Consider
random variables, X and Y . For a constant c ∈ R, it holds that:

1. E [cX] = cE [X]

2. E [X + Y ] = E [X] + E [Y ] . linearity of expectation

3. E [E [X|Y ]] = E [X] . law of total expectation

4. Var [c] = 0 . the variance of a constant is zero

5. Var [cX] = c2Var [X].
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In addition, if X and Y are independent random variables, it holds that:

6. E [XY ] = E [X]E [Y ]

7. Var [X + Y ] = Var [X] + Var [Y ] .

Exercise 3.2: Show the third property of expectations, E [E [X]] = E [X]. �

3.8 Probability Review Exercises
Phew, that was a lot about probability. This section includes more exercises to help you
get used to all this new terminology and new concepts. Answers to these solutions can be
found in Appendix 12.
Exercise 3.3: You roll a fair six-sided die once.

1. What is the sample space for rolling the dice?

2. What is the probability of observing an even number?

3. What is the probability of not observing 3 when you roll the dice?

4. What is the probability of neither observing 3 nor 4 when you roll the dice?

Exercise 3.4: In a Bernoulli trial, the probability of success was 0.7. What is the
probability of failure?
Exercise 3.5: Assume X is a continuous random variable with a uniform distribution on
the interval [−5, 5].

1. What is P (X ≤ 4.5)?

2. What is P (−3 ≤ X ≤ 3)?

Exercise 3.6: Two discrete random variables X and Y have the following joint distribu-
tion,

x = 1 x = 2 x = 3
y = 1 3

18
1
18

1
18

y = 2 1
18

3
18

1
18

y = 3 2
18 c 3

18

1. What is c?

2. What is p(x = 3)?

3. What is p(y = 1)?
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Exercise 3.7: Two continuous random variables X and Y have the following joint pdf,

p(x, y) =
{
cx2

y2 y ≥ 1, 0 ≤ x ≤ 1
0 otherwise

(3.2)

1. Write the outcome space for X and the outcome space for Y ?

2. Write the joint outcome space for the two-dimensional random variable (X,Y ).

3. What is c?

4. Calculate p(y|x = 0.5).
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Chapter 4

Supervised Learning

We are finally ready to formally present the supervised learning setting. In supervised
learning, we are given a random dataset D = ((X1, Y1), . . . , (Xn, Yn)) ∈ (X × Y)n where
each (Xi, Yi) is an independent and identically distributed according to PX,Y for all i ∈
{1, . . . , n}. Xi is often called a features, and Yi is often called a label or target. We will
assume that the features are always represented as a vector Xi ∈ Rd for some d ∈ N.
Example 4.1: [Predicting house prices] If we are trying to predict house prices, then
Xi ∈ R3 could be a vector of three features such as the number of bedrooms, the number
of floors, and the age of the house. Yi ∈ R would be the price of the house. �

Example 4.2: [Predicting the type of wine] If we are trying to predict the type of wine,
then Xi ∈ R2 could be a vector of two features such as the alcohol content and the acidity.
Yi ∈ {A,B,C,D} would be the type of wine. �

Example 4.3: [Classifying the type of image based on pixel values] If we are trying to
classify the type of image, then Xi ∈ R400 could be a vector of pixel values of a 20 × 20
image. Yi ∈ {cat, dog, bird} would be the type of image. �

It is not always clear what the features and labels are. For example, in the case of
predicting house prices, we could have a dataset where the features are the price of the
house and the number of bedrooms, and the label is the age of the house. Usually the
features are the information that is easy to collect, while the label is harder to collect, and
thus we want to predict the label from the features. In the case of the pixel images, it is
likely easy to collect lots of images from the internet, but it is hard to label them.

We have defined the data we recieve; however, we have not defined what learning well
means. This will be the focus of the next section.

4.1 Defining the Learning Objective

In Chapter 1, we discussed how learning is the process of taking experience (the dataset) and
using it to produce knowledge (the predictor). In Chapter 2 we explained how a program
that is doing the learning can be represented by a function A : (X ×Y)n → {f |f : X → Y}
called the learner. The learner takes as input a random datasetD and outputs a predictor f .
Roughly speaking, a good learner is then one that outputs a good predictor. This objective
can be written as

Objective 1 (Informal) Define a learner A : (X × Y)n → {f |f : X → Y} such that the
predictor f̂ is good, where A(D) = f̂ .
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To develop some intuition of what a good predictor is we will consider the example of
predicting house prices based on the number of rooms. Here, the number of rooms would
be the feature and the price would be the label. Suppose we are given an arbitrary predictor
f : X → Y. Next, we are presented with the number of rooms X = 2 of some random
house, but we are not given the price Y = 300. We would likely say the predictor is good if
f(2) = 300. However, consider the case where we are presented with the number of rooms 2
of some other random house, but we are not given its price of 400. Now, it seems less clear
what a good predictor would do. If the predictor outputs f(2) = 400, then it predicts the
price of the second house correctly, but is wrong for the first house. Perhaps a predictor
that outputs f(2) = 350 is better, but why should we think that being 50 off from both
house prices is better than being 100 off from one house price and 0 off from the other? We
can image considering this example unrolling for infinitely more random houses.

This example was trying to illustrate two important things that need to be considered
when evaluating the quality of a predictor. First, the feature vector X and label Y are
randomly drawn from the distribution PX,Y , so the predictor could potentially be tasked
with predicting the label based on any feature vector. Second, we need to consider how to
measure how close a prediction f(X) is to the true label Y . To address the first problem, we
will choose to evaluate the predictor in expectation over all possible feature-label pairs. To
address the second problem, we will measure the closeness of the prediction to the true label
using a loss function ` : Y ×Y → R. However, the choice of loss function will depend on the
problem. For now we keep the loss function abstract and will discuss concrete examples in
the next section.

Formally, a good predictor f should have a small expected loss. The expected loss of a
predictor f is defined as

L(f) = E[`(f(X), Y )]

where the expectation is taken over the distribution PX,Y . Notice how `(f(X), Y ) is a
random variable, since it is a function of the random feature-label pair (X, Y ). Using this
definition, we can attempt to define the learning objective more formally.

Objective 2 (Almost formal) Define a learner A : (X × Y)n → {f |f : X → Y} such
that L(f̂) is small, where A(D) = f̂ .

We write that this almost formal because there is still some ambiguity. In particular, the
careful reader might notice that the dataset D is random, so the predictor A(D) = f̂ , is
also random, since the learner A is a function of the random variable D. This means that
if the value of D changes, then f̂ might also change. So the question becomes, for which
datasets D do we want the predictor to have a small expected loss? Perhaps we can define
the learner such that it outputs the best predictor for all possible datasets. This turns out
to be an unachievable goal. Instead we will ask the learner to output a good predictor in
expectation over all datasets. We can formally write the objective now as

Objective 3 (Formal) Define a learner A : (X × Y)n → {f |f : X → Y} such that
E [L(A(D))] is small.

Notice how L(A(D)) is a random variable, since it is a function of the random variableA(D),
which itself is a function of the random variable D. This objective can seem complicated.
To ease the analysis of how to achieve it, at times we will assume the dataset D is not
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random, and instead is fixed. To denote that we are dealing with a fixed dataset we will
write D instead of D. Doing this will help us study the learner A in isolation from the
randomness of the dataset D. For instance, we can study how to define A(D) = f̂ such
that L(f̂) is small for a fixed dataset D.

In Section 4.3 we discuss the approach we will take to achieving the above objective.
First, we discuss two common types of supervised learning problems. Namely, regression
and classification.

4.2 Regression and Classification
The distinction between regression and classification is based on the type of label Y ∈ Y.
In regression, there is a notion of order between the labels Y in the set of labels Y, while
in classification there is no such notion of order. Usually, the set of labels Y is either R or
an interval in R for regression, and a finite set for classification.
Example 4.4: [Regression] We provide some examples of sets of labels Y for regression.

• Predicting house prices: Y = [0,∞) represents the set of all possible prices of a house.
Alternatively, we could write Y = R, where of course the price of a house cannot be
negative. There is a notion of order between the prices of houses, since a house that
costs $200k is closer in prices to a house that costs $300k than to a house that costs
$1M.

• Predicting stock prices: Y = [0,∞) represents the set of all possible prices of a stock.
There is a notion of order between the prices of stocks, since a stock that costs $200
is closer in prices to a stock that costs $300 than to a stock that costs $1, 000.

• Predicting energy consumption of a factory: Y = R represents the set of all possible
energy consumption values. There is a notion of order between the energy consump-
tion values, since a factory that consumes 100 kWh is closer in energy consumption
to a factory that consumes 200 kWh than to a factory that consumes 1, 000 kWh.

• Prediction the temperature tomorrow: Y = R represents the set of all possible tem-
peratures. There is a notion of order between the temperatures, since a temperature
of 20◦ is closer in temperature to a temperature of 25◦ than to a temperature of 30◦.

�

Example 4.5: [Classification]

• Predicting the type of wine: Y = {A,B,C,D} represents the set of possible types of
wine. There is no notion of order between the types of wine, since there is no way to
say that type A is closer to type B than to type C.

• Predicting the type of image: Y = {cat, dog, bird} represents the set of possible types
of images. There is no notion of order between the types of images, since there is no
way to say that a cat is closer to a dog than to a bird.

• Predicting the type of email: Y = {spam,not spam} represents the set of possible
types of emails. There is no notion of order since there are only two types of emails.
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• Predicting the type of disease: Y = {cancer, diabetes, flu} represents the set of possible
types of diseases. There is no notion of order between the types of diseases.

�

The reason it is important to distinguish between regression and classification is that
the loss function ` : Y × Y → R will depend on the type of label Y . For regression we use
loss functions that measure how close the prediction f(X) is to the true label Y . Some
common choices are the absolute loss

`(f(X), Y ) = |f(X)− Y |

and the squared loss

`(f(X), Y ) = (f(X)− Y )2.

For classification there is no notion of closeness between the prediction and the true label,
so we use loss functions that measure how well the prediction matches the true label. The
common choice here is the zero-one loss

`(f(X), Y ) =
{

0 if f(X) = Y

1 if f(X) 6= Y.

4.3 Empirical Risk Minimization

In this section we will discuss how we can define a learner A(D) = f̂ such that L(f̂) is
small for a fixed dataset D. Before getting into the details we make a small notational
remark. Untill now we have called L(f) the expected loss of the predictor f ; however,
another common name for L(f) is the risk of the predictor f . Throughout the rest of the
notes we will use the term risk and expected loss interchangeably.

Returning to our goal of making L(f̂) small. One might naively think that we can
simply calculate L(f) for all possible predictors f and choose the one with the smallest loss.
However, this idea quickly runs into a problem. In particular, we cannot calculate L(f)
since we do not know the distribution PX,Y . Recall that we are only given a dataset D and
not the distribution PX,Y .

To address this problem we will use the dataset D to estimate the risk L(f) of a predictor
f . This estimate will be denoted as L̂(f) and since it is based on data it is common to call
this estimte the empirical risk of the predictor f . If we can ensure that the empirical risk
L̂(f) is a good estimate of the risk L(f), then we can simply choose the predictor f̂ that
minimizes the empirical risk. However, we need to be careful about the set of predictors we
are considering. It turns out that if the set of predictors is too large or unstructured we will
run into two problems. The first is it will be computaitonally infeasible to search through
all of the predictors to find the one with the smallest empirical risk. The second is that our
estimate L̂(f) will be a poor estimate of the risk L(f). To address these problems we will
restrict the set of predictors to a class of functions F which is just a set of predictors that
is a strict subset of all possible predictors {f |f : X → Y}.

This approach has the obvious name of empirical risk minimization (ERM). More pre-
cisely, the ERM approach is defined as follows.
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Definition 1 (Empirical Risk Minimization) Given a fixed dataset D and function
class F , the empirical risk minimization approach does the following:

1. Estimation: Use D to estimate the risk L(f) for any predictor f ∈ F . This estimate
is called the empirical risk and is denoted as L̂(f).

2. Optimization: Choose the predictor f̂ to be the predictor f ∈ F that minimizes the
empirical risk L̂(f).

We have defined ERM for a fixed dataset D; however, the definition is exactly the same for
a random dataset D, except now the predictor f̂ is random.

Notice that ERM is indeed a learner A : (X × Y)n → {f |f : X → Y}, since it takes as
input a dataset D and outputs a predictor f̂ ∈ F ⊂ {f |f : X → Y}. The ERM approach
is a general learner that can be applied to any supervised learning problem. In the next
chaper we will discuss how to do the estimation step of ERM. While in Chapter 6 we will
discuss how to do the optimization step of ERM.

We present some high-level examples of what the ERM approach looks like for some
common supervised learning problems.
Example 4.6: [ERM for house price prediction] Suppose we are trying to predict house
prices based on the number of rooms. The set of predictors F could be the set of all lines
of the form f(x) = w · x+ b. The empirical risk L̂(f) could be estimated by calculating the
average squared loss over the dataset D. The optimization step would then be to find the
values of w and b that minimize the empirical risk. The predictor f̂ would then be the line
that best fits the data. �

Example 4.7: [ERM for image classification] Suppose we are trying to classify images of
cats and dogs based on the pixel values. The set of predictors F could be the set of all
neural networks of a fixed architecture1. The empirical risk L̂(f) could be estimated by
calculating the average zero-one loss over the dataset D. The optimization step would then
be to find the weights of the neural network that minimize the empirical risk. The predictor
f̂ would then be the neural network that best classifies the images. �

1You should think of a neural network with a fixed architecture as just some complicated predictor
function.

57



Chapter 5

Estimation

Estimation is the proces of using data to infer the value of an unknown quantity. In this
chapter our goal will be to introduce a way of performing the estimation step in ERM.
In particular, how we can estimate the expected loss L(f) of a predictor f . We begin by
introducing estimation through the simpler example of estimating the mean of coin flip.
Then, we show how this can be generalized to estimating the expected loss of a predictor.

5.1 Estimating the Mean of a Coin Flip
Suppose you have an unfair coin that lands on heads with probability α. This can be
modeled as a random variable X ∈ {0, 1} where X = 1 if the coin lands on heads and
X = 0 if the coin lands on tails. X is a Bernoulli random variable with parameter α. This
means its probability mass function is given by

p(x) =
{
α if x = 1
1− α if x = 0

Since X is a random variable, we can compute its expected value, which is given by

E[X] = 1 · α+ 0 · (1− α) = α

This means that the expected value of X is equal to the probability that the coin lands
on heads. Now suppose we do not know the value of α. The question becomes: how can
we estimate α? One way to do this is to flip the coin n times and take the average of the
outcomes. Formally this idea can be expressed as follows. Let Z = (X1, . . . , Xn) ∈ {0, 1}n
be multivariate random variable representing the outcomes of n coin flips. Each Xi is to
be thought of as representing a single flip of the same biased coin. This means each Xi is
independent and identically distributed (i.i.d.) with the same distribution Bernoulli(α).

The estimate of α using an average of the n coin flips can be written as a function

g(Z) = g(X1, . . . , Xn) = 1
n

n∑
i=1

Xi

This function g is called the sample mean estimate of α. Notice how g is a function of the
random variable Z, thus it is also a random variable. It is common to use the notation X̄
to denote the sample mean estimate g(Z). Another convention is to use a hat to denote
the estimate of a parameter. In this case we would write α̂ = g(Z), to denote that α̂ is the
estimate of α. In particular,

α̂ = X̄ = g(Z),
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and we will use this notation interchangeably. If we were to change the quantity we are
estimating, we would change the symbol the hat is applied to accordingly.

Since our estimate α̂ is a random variable, we can take its expected value. This is given
by

E[α̂] = E
[

1
n

n∑
i=1

Xi

]
= 1
n

n∑
i=1

E[Xi] = 1
n

n∑
i=1

E[X] = 1
n

n∑
i=1

α = α.

The second equality follows from the fact that the expected value of a constant times a
random variable is the constant times the expected value of the random variable (Property
1). The third equality follows from the linearity of expectation (Property 2). The fourth
equality follows from the fact that each Xi is identically distributed, which implies that
E[Xi] = E[X]. This means that the expected value of our estimate α̂ is equal to the true
value of α.

To get some intuition of what this means, consider the following example.
Example 5.1: Let everything be as defined above with α = 4/5. Suppose we flip the coin
n = 5 times and call this an experiment. Each time we perform this experiment, we get a
specific outcome of the coin flips. We can of course perform this experiment multiple times.
Suppose we perform the experiment 4 times and get the following outcomes:

Experiment Outcome z Estimate α̂
1 (1, 0, 1, 1, 1) 4/5
2 (0, 1, 0, 1, 1) 3/5
3 (1, 1, 1, 1, 1) 5/5
4 (0, 1, 0, 0, 0) 1/5

Notice how for a particular experiment, the estimate α̂ can be different. What the expected
value of α̂ tells us is that if we were to perform the experiment an infinite number of times,
the average of all the estimates would be equal to the true value of α.

You might have noticed that the estimate α̂ is equal to g(z) here, which is not a random
variable since it is a function of the specific outcome z. This highlights an important abuse
of notation. In particular, it is common to use the same notation α̂ to denote both the
random variable g(Z) and the specific value g(z). The context should make it clear which
one is being referred to. �

The above example illustrates how each outcome of n coin flips can vary from one
experiment to another. This naturally leads us to calculating the variance of our estimate
α̂. The variance of α̂ is given by

Var[α̂] = Var
[

1
n

n∑
i=1

Xi

]
= 1
n2Var

[
n∑
i=1

Xi

]
= 1
n2

n∑
i=1

Var[Xi] = 1
n2

n∑
i=1

Var[X] = 1
n
Var[X].

The second equality follows from the fact that the variance of a constant times a random
variable is the constant squared times the variance of the random variable (Property 5).
The third equality follows from the fact that the Xi are independent, so the variance of the
sum is the sum of the variances (Property 7). The fourth equality follows from the fact that
the Xi are identically distributed, which implies that Var[Xi] = Var[X].

This result tells us that the variance of our estimate α̂ decreases as we increase the num-
ber of coin flips n. This is intuitive since the more coin flips we have, the more information
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we have about the true value of α. An important thing to notice is that none of the above
results were specific to the Bernoulli distribution. In fact, the same results hold for any
distribution, as long as the n random variables are independent and identically distributed.
We will now generalize this to estimating the expected loss of a predictor.

5.2 Estimating the Expected Loss of a Predictor
To show how we can estimate the expected loss of a predictor, we will follow nearly the same
steps as for the coin flip example. Let (X, Y ) ∈ X × Y be a random variable representing
a feature-label pair, with distribution PX,Y . If we have a predictor f : X → Y, then f(X)
is also a random variable. Similarly, for a loss function ` : Y × Y → R, the loss `(f(X), Y )
is a random variable. Recall that we do not know the expected loss L(f) = E[`(f(X), Y )].
Thus, we would like to estimate it. To do this we can use the sample mean estimate based
on n feature-label pairs.

Formally, letD = ((X1, Y1), . . . , (Xn, Yn)) ∈ (X×Y)n be a random variable representing
a dataset of n feature-label pairs. As we have discussed in the last chapter, we assume that
each (Xi, Yi) is independent and identically distributed with distribution PX,Y . The sample
mean estimate of L(f) is given by

L̂(f) = 1
n

n∑
i=1

`(f(Xi), Yi).

As discussed in the previous section, this expected value and variance of L̂(f) is

E[L̂(f)] = L(f), and Var[L̂(f)] = 1
n
Var[`(f(X), Y )].

This shows that the estimate L̂(f) has some desirable properties. In particular, the expected
value of L̂(f) is equal to the true value of L(f), and the variance of L̂(f) decreases as we
increase the number of feature-label pairs n. This means that as we get more data, our
estimate of the expected loss of a predictor becomes more accurate.

Notice that the relationship to the coin flip example is quite clear. In particular the
feature-label pairs random loss `(f(Xi), Yi) is analogous to the coin flip random variable
Xi. The expected loss L(f) is analogous to the probability of the coin landing on heads α,
and the sample mean estimate L̂(f) is analogous to the sample mean estimate α̂.

Notice that so far we have considered the expected loss of a single predictor f . Recall
that in ERM we need to an estimate of L(f) for all the predictors f in our function class
F . The question then becomes: if we use L̂(f) based on the same dataset D, then is it a
good estimate of L(f) for all f ∈ F? The answer to this not so simple and it will depend
on how large n is and how complex the function class F is. This is a topic we will explore
in Chapter 7. For now, we will assume that L̂(f) is a good estimate of L(f) for all f ∈ F ,
and move on to the optimization step of ERM in the next chapter.
Example 5.2: Suppose we are working with features representing the number of rooms
in a house and labels representing the price of the house. Let D = {(x1, y1), . . . , (x5, y5)} =
((2, 300), (1, 150), (3, 400), (2, 200), (1, 100)) be a fixed dataset of 5 feature-label pairs. Let
`(ŷ, y) = (ŷ − y)2 be the squared loss function. Suppose we have two different predictors
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f1(x) = 100x and f2(x) = 200x. We can calculate the expected loss of each predictor using
the dataset D.

L̂(f1) = 1
5

5∑
i=1

(100xi − yi)2

= 1
5[(200− 300)2 + (100− 150)2 + (300− 400)2 + (200− 200)2 + (100− 100)2]

= 4500.

L̂(f2) = 1
5

5∑
i=1

(200xi − yi)2

= 1
5[(400− 300)2 + (200− 150)2 + (600− 400)2 + (400− 200)2 + (200− 100)2]

= 20500.

This shows that the expected loss of f1 is lower than the expected loss of f2. If we were
using ERM and the function class F only contained f1 and f2, then we would choose f1 as
our predictor f̂ . �
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Chapter 6

Optimization

Optimization is the process of finding the best solution from a set of possible solutions.
Usually this means minimizing or maximizing some function. In this chapter our goal will
be to introduce some ways of performing the optimization step in ERM. In particular, we will
discuss how we can find the predictor f ∈ F that minimizes L̂(f), which is our estimate
of the expected loss L(f). Similar to last chapter, we will begin with some examples of
minimizing simpler functions and then move on to minimizing L̂(f).

6.1 Optimization Basics
Let us start by considering the problem of minimizing a function g :W → R. The minimum
value of g(w) over all w ∈ W is denoted by

min
w∈W

g(w).

If we want the w ∈ W that achieves this minimum, we can write

w∗ = argmin
w∈W

g(w).

The value w∗ is called the minimizer of g(w). Clearly, minw∈W g(w) = g(w∗).
Example 6.1: Let g(w) = w2 and W = R. The function g is shown in Fig. 6.1.
Visually we can see that minw∈W g(w) = 0 (shown as a purple point in the figure) and

Figure 6.1: The function g(w) = w2.

w∗ = argminw∈W g(w) = 0. Notice that g(w∗) = g(0) = 0 = minw∈W g(w).
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Suppose we changed the domain to W = {−1, 2}. Then minw∈W g(w) = 1 (shown as
a green point in the figure) and w∗ = −1. Again, g(w∗) = g(−1) = 1 = minw∈W g(w).
However, notice that changing the domain W from R to {−1, 2} changed the minimizer w∗
and the minimum value. This example highlights the importance of the domain W when
performing optimization. �

So far we have only spoken about minimizing functions. The reason for this is that there
is a relationship between minimizing a function and maximizing a function. The minimizer
of g(w) is the maximizer of −g(w) and vice versa. Formally, this means that

w∗ = argmin
w∈W

g(w) = argmax
w∈W

−g(w).

This can be seen in both the plots in Fig. 6.2. Thus, if we want the maximizer of a function

Figure 6.2: Left: the function g(w) = w2 and −g(w) = −w2. Right: the function g(w) =
(w − 1)2 + 1 and −g(w) = −(w − 1)2 − 1.

h(w) we can define −g(w) = h(w) and find the minimizer of g(w).
Notice, however, that the minimum value of g(w) is not necessarily the maximum value

of −g(w). For example, consider the function g(w) = (w − 1)2 + 1, which is shown on the
right in Fig. 6.2. The minimum value of g(w) is 1 and the minimizer is w∗ = 1. However,
the maximum value of −g(w) is −1 and the maximizer is w∗ = 1. Thus, the minimum value
of g(w) is not the maximum value of −g(w). It can be shown that instead, the minimum
value of g(w) is the negative of the maximum value of −g(w). Formally, this means that

min
w∈W

g(w) = −
(

max
w∈W

−g(w)
)
.

This should not be a surprise. Since w∗ is the minimizer of g(w) and maximizer of −g(w), it
implies that g(w∗) = minw∈W g(w) and −g(w∗) = maxw∈W −g(w). Thus, minw∈W g(w) =
g(w∗) = −(−g(w∗)) = −(maxw∈W −g(w)).

We have not yet discussed how to find the minimizer of a function. The process to do so
depends on the function g(w) and the domain W. If W is discrete (not continuous), then
we can simply evaluate g(w) for all w ∈ W and find the w that achieves the minimum. We
have already seen this in Example 6.1 when W = {−1, 2}. If W is continuous, then we can
sometimes use derivatives to find the minimizer. For the remainder of this section we will
focus on the second case, as is typical in machine learning.

63



6.2 Continuous Optimization

In this section we will discuss how to find the minimizer of function g(w) over a continuous
domain W. Some examples of continuous domains are W = R or an interval W = [a, b]. To
find the minimizer of g(w) we will have to make another assumption about g(w). We will
assume that g(w) is convex and twice differentiable. A function g(w) is twice differentiable if
its second derivative exists for all w ∈ W. A function g(w) is convex it its second derivative
is non-negative. Formally, g(w) is convex if

g′′(w) ≥ 0, ∀w ∈ W.

We also assumed that g(w) is twice differentiable so that its second derivative exists and
we can use it to determine if g(w) is convex as we described above. Roughly speaking, a
function is convex if it is bowl shaped. An example of a convex function is g(w) = w2,
which we have already seen in Example 6.1.

The reason we assume g(w) is convex is because it makes finding the minimizer easier.
In particular, if g(w) is convex, then:

1. If W = R, the minimizer of g(w) is the w that satisfies g′(w) = 0.

2. If W = [a, b], the minimizer of g(w) is the w ∈ R that satisfies g′(w) = 0 if it is an
element of [a, b]. Otherwise, the minimizer is a or b.

Example 6.2: [Convex with W = R] Let g(w) = w2 and W = R. Then, g′(w) = 2w, and
g′′(w) = 2. Thus, g(w) is convex, since g′′(w) ≥ 0. To find the minimizer of g(w) we solve
g′(w) = 0. This gives 2w = 0 or w = 0. Thus, the minimizer of g(w) is w∗ = 0. This aligns
with what we saw in Example 6.1.

Figure 6.3: The function g(w) = w2. Left: optimizing over W = R and showing derivative
g′(w) = 2w at w = −1, 0, 1. Right: optimizing over W = [1, 2].

The plot on the left in Fig. 6.3 shows a visual interpretation of this example. The
derivative g′(w) = 2w can be visualized as a line with slope 2w passing through the point
g(w). For w = −1 the slope is −2 and for w = 1 the slope is 2, which are shown as the green
and blue lines in the plot respectively. While, for w = 0 the slope is 0 and is shown as the
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purple line in the plot. Notice that when the derivative is 0 the function is at a minimum,
which is why we solve g′(w) = 0 to find the minimizer.

We can also use the left plot to build some intuition about the second derivative. The
second derivative g′′(w) = 2 represents the constant rate of change of the derivative g′(w) =
2w. Since g′′(w) ≥ 0, the derivative g′(w) is increasing linearly with w. In the plot, we can
see this: at w = −1, g′(w) = −2; at w = 0, g′(w) = 0; and at w = 1, g′(w) = 2. The
constant positive second derivative indicates that the function g(w) is convex (bowl-shaped)
everywhere. �

Example 6.3: [Convex with W = [1, 2]] Now let g(w) = w2 and W = [1, 2]. From the
previous example we know that the minimizer of g(w) is w∗ = 0. However, w∗ = 0 is not
in the domain W = [1, 2]. Thus, we must consider the endpoints of the domain. Since
g(1) = 1 and g(2) = 4, we know that the minimizer of g(w) is w∗ = 1. The plot on the
right in Fig. 6.3 shows a visual interpretation of this example. �

Example 6.4: [Non-convex] Let g(w) = w3 and W = R. Then, g′(w) = 3w2 and g′′(w) =
6w. Since g′′(w) = 6w is negative for w < 0, g(w) is not convex. Thus, we cannot use the
derivative to find the minimizer of g(w).

However, suppose we tried to use the derivative to find the minimizer. We would solve
g′(w) = 0 to get 3w2 = 0 or w = 0. This is visualized in the plot in Fig. 6.4. We can see
that w = 0 is not the minimizer of g(w). �

Figure 6.4: The function g(w) = w3.

Example 6.5: [Complex Non-convex] LetW = R and define g(w) as the function in the plot
in Fig. 6.5. We use this example to illustrate that one can visually check that the function is
not convex. Intuitively, we can see that the function is not bowl shaped. Formally, since the
function has multiple minimizers and maximizers (shown as the purple points), it’s second
derivative must be negative at some points. Thus, the function is not convex. �

6.2.1 Optimization Over Multidimensional Domains

In this section we will discuss how to find the minimizer of a function g(w) over a multi-
dimensional domain W such as Rd. Again, we will assume that g(w) is convex and twice
differentiable. Checking if g(w) is convex is more complicated in higher dimensions. In
these notes we will always indicate if a function is convex or not over a multidimensional
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Figure 6.5: A complicated non-convex function.

domain. The minimizer of g(w) is written as

w∗ = (w∗1, . . . , w∗d) = argmin
w∈W

g(w).

If W = Rd, then each w∗j can be found by solving ∂g
∂wj

(w) = 0 for all j ∈ {1, . . . , d}. This
should remind you of the one-dimensional case where we solved g′(w) = 0, except now we
have to solve d equations.
Example 6.6: Let g(w) = w2

1 +w2
2 andW = R2. Then, ∂g

∂w1
(w) = 2w1 and ∂g

∂w2
(w) = 2w2.

To find the minimizer of g(w) we solve ∂g
∂w1

(w) = 0 and ∂g
∂w2

(w) = 0. This gives w1 = 0
and w2 = 0. Thus, the minimizer of g(w) is w∗ = (0, 0). The function g(w) is shown in
Fig. 6.6. It is again a bowl shaped function (since it is convex), and its minimizer is at the
bottom of the bowl. �

Figure 6.6: The function g(w) = w2
1 + w2

2.
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6.3 Closed Form Solution for Linear Regression
Recall that the optimization step of ERM was to find the predictor f ∈ F that minimizes
L̂(f). Using the notation from the previous sections we can write this as

f̂ = argmin
f∈F

L̂(f) where L̂(f) = 1
n

n∑
i=1

`(f(xi), yi).

Notice the similarity between this and the minimization of g(w) over w ∈ W. Now g(w) =
L̂(f) and W = F . If L̂(f) is convex and twice differentiable, and F is continuous, then we
can use the techniques from the previous sections to find f̂ . Next, we try to select F , `,X ,Y,
such that this is the case.

We will focus on optimization in the regression setting. In particular, we will consider
Y = R. The set of feature vectors X will be Rd. We assume we are given a fixed dataset
D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n. We have to select a function class F , which
contains all the predictors we will be optimizing over. We will select F to be the set of
linear functions, hence the name linear regression. Formally, the function class is

F = {f |f : X → Y and f(x) = xTw + b for some w ∈ Rd, b ∈ R}.

In words, F contains all the predictors of the form f(x) = xTw + b for some w ∈ Rd, b ∈ R.
The term w is called the weight vector or the weights and b is called the bias. The bias is a
constant that shifts the prediction up or down. Take the case of d = 1. Then, the predictor
is f(x) = wx+ b. The term b shifts the line up or down, while w controls the slope of the
line.

Writing the bias as a seperate term is often mathematically inconvenient. As such, it
is common to include the bias as an extra dimension in the weight vector w. Formally, we
can write w = (w0, w1, . . . , wd), where we have used w0 to represent the bias. We must also
change the feature vector by adding a 1 to the beginning. Formally, x = (x0 = 1, x1, . . . , xd).
Then, the predictor is f(x) = xTw = w0+w1x1+. . .+wdxd. Notice how the predictor is the
same as before, but now it can be written in a more compact form as just the dot product
of x and w. Now w is in Rd+1 instead of Rd, and we will simply refer to it as the weight
vector. Similarly x is in Rd+1 instead of Rd. It is important to note that now X = Rd+1

and whenever we write x ∈ X we always assume that x is of the form (1, x1, . . . , xd) (i.e.
the first element is 1). Similarly, all the feature vectors xi in the dataset D are of the form
(xi0 = 1, xi1, . . . , xid) ∈ Rd+1 for i ∈ {1, . . . , n}. With this change the function class F is
now

F = {f |f : X → Y and f(x) = xTw for some w ∈ Rd+1}.

In the previous sections we only discussed optimization over domains W that contained
numbers or vectors. However, F is a set of functions. We will address this difference by
making a helpful observation. Notice that f̂ , which is the minimizer of L̂(f), is a function
in F . That means that f̂ = xT ŵ for some ŵ ∈ Rd+1. Thus, our goal can be restated as
the optimization problem

ŵ = argmin
w∈Rd+1

L̂(w) where L̂(w) = 1
n

n∑
i=1

`(x>i w, yi).
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We have abused notation slightly by passing a vector w to L̂ instead of a function f and
defining L̂(w) differently from L̂(f). We will, again, trust that the definition will be clear
from the context. What is important in the above display is that the minimization is now
over Rd+1 instead of F . If we set W = Rd+1 and g(w) = L̂(w), then this expression is of
the same form as the optimization problems in Section 6.2.1.

What is left is to ensure that L̂(w) is convex and twice differentiable. We will not show
this, but, if we select the squared loss function `(ŷ, y) = (ŷ − y)2, then L̂(w) is convex and
twice differentiable. This sets us up to use the techniques from Section 6.2.1 to find ŵ.

6.3.1 Minimizing the Estimate of the Expected Loss

Our goal is to find ŵ = (w0, w1, . . . , wd), which is the minimizer of L̂(w). We can do this
by solving ∂L̂(w)/∂wj = 0 for all j ∈ {0, . . . , d}.

Let us begin by first writing out L̂(w).

L̂(w) = 1
n

n∑
i=1

`(x>i w, yi)

= 1
n

n∑
i=1

(x>i w− yi)2

= 1
n

n∑
i=1

(xi0w0 + . . .+ xidwd − yi)2 .

If we define L̂i(w) = (xi0w0 + . . .+ xidwd − yi)2, then we can write

L̂(w) = 1
n

n∑
i=1

L̂i(w).

Now we are ready to take the partial derivative of L̂(w) with respect to wj , for all j ∈
{0, . . . , d}. Due to the linearity of the derivative (Section 2.6.2) we can take the derivative
of each term in the sum separately to get

∂L̂

∂wj
(w) = 1

n

n∑
i=1

∂L̂i
∂wj

(w).

We now focus on the term ∂L̂i(w)/∂wj where i ∈ {1, . . . , n}. To help us we will use the
chain rule (Eq. (2.2)), by setting ui = xi0w0 + . . .+ xidwd − yi, g(ui) = u2

i . Then,

∂L̂i
∂wj

(w) = ∂g

∂ui

∂ui
∂wj

(w).

Each of the partial derivatives on the right hand side can be computed as follows.
∂g

∂ui
= 2ui, and ∂ui

∂wj
= xij .

Using these two derivatives and plugging in the definition of ui we get

∂L̂i
∂wj

(w) = 2(xi0w0 + . . .+ xidwd − yi)xij = 2xij
(
x>i w− yi

)
.
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We can now plug this result back into the expression for ∂L̂/∂wj to get

∂L̂

∂wj
(w) = 1

n

n∑
i=1

2xij
(
x>i w− yi

)
.

Recall that we need to set this derivative to 0 for each j ∈ {0, . . . , d}. Doing this and
rearranging for a specific j ∈ {0, . . . , d}, we have

1
n

n∑
i=1

2xij
(
x>i w− yi

)
= 0 =⇒

n∑
i=1

xijx>i w =
n∑
i=1

xijyi.

Thus we have d+1 equations, one for each j ∈ {0, . . . , d}. We can explicitly write out these
equations as

n∑
i=1

xi0x>i w =
n∑
i=1

xi0yi

...
n∑
i=1

xidx>i w =
n∑
i=1

xidyi.

To solve this system of equations it will be helpful to write it in matrix form.
∑n
i=1 xi0xi0

∑n
i=1 xi0xi1 · · ·

∑n
i=1 xi0xid∑n

i=1 xi1xi0
∑n
i=1 xi1xi1 · · ·

∑n
i=1 xi1xid

...
... . . . ...∑n

i=1 xidxi0
∑n
i=1 xidxi1 · · ·

∑n
i=1 xidxid



w0
w1
...
wd

 =


∑n
i=1 x0iyi∑n
i=1 x1iyi

...∑n
i=1 xdiyi


Aw = b.

Here, Ajk = ∑n
i=1 xijxik is the (j, k)-th element of the matrix A, and bj = ∑n

i=1 xijyi is the
j-th element of the vector b. Similarly, wj is the j-th element of the weight vector w.

When implementing this in code, it can be helpful to write the matrix A and vector
b in terms of the feature vectors xi. This can be done by writing A = ∑n

i=1 xix>i and
b = ∑n

i=1 xiyi. Here, xix>i is something called the outer product of xi and xi and is a d+ 1
by d+ 1 matrix defined as

xix>i =


xi0
xi1
...
xid


[
xi0 xi1 · · · xid

]
=


x2
i0 xi0xi1 · · · xi0xid

xi1xi0 x2
i1 · · · xi1xid

...
... . . . ...

xidxi0 xidxi1 · · · x2
id

 .
The important thing is that we have reduced the problem of finding ŵ to solving the

linear system Aw = b. This system of equations has the following closed form solution.

w = A−1b,

if A is invertible, where A−1 is the inverse of A. This is called the closed form solution for
linear regression. When implementing this in code, there are standard libraries that can be
used to compute the inverse of a matrix.

Thus, the weight vector ŵ that minimizes L̂(w) is ŵ = A−1b.
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6.3.2 Defining the Learner

Now that we have covered the estimation and optimization steps of ERM, we can define the
learner. Recall that learner A : (X × Y)n → F is a function that takes as input a dataset
D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n and outputs a predictor f ∈ F . For the case of
linear regression, with things as defined above, the defintion of the learner becomes quite
simple. In particular, the learner is defined as

A(D) = f̂ where f̂(x) = xT ŵ and ŵ = A−1b.

Example 6.7: Suppose we are interested in predicting house prices based on the number
of rooms in a house. In this case d = 1, X = R1+1, and Y = R. We are given a dataset
D = ((x1, y1), . . . , (xn, yn)) where xi = (xi0 = 1, xi1) and yi is the price of the i-th house.
Our ERM learner A(D) will output a predictor f̂(x) = xT ŵ, where ŵ = A−1b. This
predictor f̂ will be a line that best fits the data. A sketch of what f̂ might look like is
shown in Fig. 6.7. Each black point in the plot represent a feature-label pair from the
dataset D. �

Figure 6.7: The best fit line for a synthetic house price dataset.

In pseudocode, the learner A can be written as

Algorithm 1: Closed Form Linear Regression Learner
1: input: D = ((x1, y1), . . . , (xn, yn))
2: A←

∑n
i=1 xix>i

3: b←
∑n
i=1 xiyi

4: ŵ← A−1b
5: return f̂(x) = xT ŵ

6.4 Optimization with Gradient Descent
To motivate and introduce gradient descent we take a step back from machine learning and
consider finding the minimizer of a function g :W → R.
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Figure 6.8: The function g(w) = w2 + ew.

Example 6.8: Let g(w) = w2 + ew and w ∈ W = R. The function is shown in Fig. 6.8.
We want to find w∗ = argminw∈R g(w), which is depicted as the black X in the plot. We
would like to use the optimization techniques from Section 6.2, so we check if g(w) is convex.
The first derivative of g(w) is g′(w) = 2w+ ew and the second derivative is g′′(w) = 2 + ew.
Since g′′(w) = 2 + ew is always positive, g(w) is convex. Alternatively, we could have just
looked at the plot and seen that g(w) is bowl shaped.

Now, we can find the minimizer of g(w) by solving g′(w) = 0. This gives 2w + ew = 0
or 2w = −ew, which does not have a closed form solution1. Although, we can see from the
plot that w∗ ≈ −0.35 we do not have a mathematical expression for w∗. �

The above example highlights that in general we cannot find the minimizer of a function
g(w) in closed form. This is where gradient descent comes in.

6.4.1 Second-Order Gradient Descent (Newton’s Method)

Assume that g(w) is convex. Since w∗ = argminw∈W g(w) does not have a closed form
solution in general, we can instead approximate g(w) with a convex function that does have
a closed form solution. A quadratic function can be chosen to always be convex and always
has a closed form solution. Thus, we will use a quadratic function to approximate g(w). To
do this we will use the second-order Taylor expansion of g(w) at a point w0, given by

gw(0)(w) = g(w(0)) + g′(w(0))(w − w(0)) + 1
2g
′′(w(0))(w − w(0))2.

We have that g(w) ≈ gw(0)(w) when w is close to w(0).
Example 6.9: With things defined as in Example 6.8, we can use the second-order Taylor
expansion to approximate g(w). We choose w(0) = 1. Then,

gw(0)(w) = g(1) + g′(1)(w − 1) + 1
2g
′′(1)(w − 1)2.

1A closed form solution is an expression that only uses a finite combination of elementary functions.
Elementary functions include polynomials, exponentials, logarithms, trigonometric functions, and their in-
verses.
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Calculating g(1) = 1 + e, g′(1) = 2 + e, and g′′(1) = 2 + e, we get

gw(0)(w) = 1 + e+ (2 + e)(w − 1) + 1
2(2 + e)(w − 1)2 =

(
1 + 1

2e
)
w2 + 1

2e.

The function gw(0)(w) is shown in Fig. 6.9. Notice how gw(0)(w) is a quadratic function and

Figure 6.9: The functions g(w) and gw(0)(w).

is a good approximation of g(w) near w = w(0) = 1. �

Recall that we are interested in finding the minimizer of g(w). Since g(w) ≈ gw(0)(w),
the minimizer of gw(0)(w) will be close to the minimizer of g(w). We can find the minimizer
of gw(0)(w) by solving g′

w(0)(w) = 0, since gw(0)(w) is convex. The first derivative of gw(0)(w)
is

g′w(0)(w) = g′(w(0)) + g′′(w(0))(w − w(0)).

Setting this to 0 and solving for w gives

w = w(0) − g′(w(0))
g′′(w(0))

.

For notational purposes which we will see later, it will be helpful to rename w to w(1). We
expect w(1) ≈ w∗.
Example 6.10: With things defined as in Example 6.9, we can find w(1). Plugging values
into w(1) = w(0) − g′(w(0))/g′′(w(0)) gives

w(1) = 1− 2 + e

2 + e
= 0.

From the plot in Fig. 6.10 we can see how good of an approximation w(1) = 0 is to w∗. �

An important observation to make from the above example is that w(1) is closer to w∗
than w(0). In general, this will be the case for any w(0) we choose. Thus, we can repeat the
same process as above, but with a quadratic approximation gw(1) centered at w(1) instead
of w(0). The expression for gw(1)(w) will be

gw(1)(w) = g(w(1)) + g′(w(1))(w − w(1)) + 1
2g
′′(w(1))(w − w(1))2.
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Figure 6.10: The functions g(w) and gw(0)(w) with w(1) = 0.

Example 6.11: With things as defined in Example 6.10, gw(1)(w), with w(1) = 1 is

gw(1)(w) = g(0) + g′(0)w + 1
2g
′′(0)w2 = 1 + w + 3

2w
2.

The function gw(1)(w) is shown in Fig. 6.11. Similar to before, we can see that gw(1)(w) is

Figure 6.11: The functions g(w), gw(0)(w) and gw(1)(w).

a good approximation of g(w) near w = w(1) = 0. �

Solving for the minimizer of gw(1)(w) will give us a new approximation w(2), which will
be closer to w∗ than w(1). The equation for w(2) will be

w(2) = w(1) − g′(w(1))
g′′(w(1))

.

Example 6.12: With things as defined in Example 6.11, we can find w(2). Plugging
values into w(2) = w(1) − g′(w(1))/g′′(w(1)) gives

w(2) = 0− 1
3 = −1

3 .
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From the plot in Fig. 6.12 we can see w(2) is a better approximation to w∗ than w(1). �

Figure 6.12: The functions g(w) and gw(2)(w) with w(2) = −1/3.

We can repeat this process to get w(3), w(4), and so on. In general, the (t+1)-th iteration
will be

w(t+1) = w(t) − g′(w(t))
g′′(w(t))

.

As t increases, w(t) will get closer to w∗. In practice, we would chose the number of iterations
T and stop at w(T ), or check that |w(t) − w(t−1)| < ε for some small ε and stop at t. Thus,
we have a method to approximate the minimizer of g(w), even when g(w) does not have
a closed form solution. This method is called Newton’s method or second-order gradient
descent. The name comes froms the fact that we are using a second order approximation
of g(w) and the gradient of g(w) is the same as the derivative of g(w), since it is a function
of a single variable.

6.4.2 (First-Order) Gradient Descent

Second-order gradient descent is a powerful optimization technique, but it has a drawback.
The drawback is that it requires the computation of the second derivative of g(w). This can
be computationally expensive, especially when g(w) is a function of many variables. Recall
that in second-order gradient descent the update rule is

w(t+1) = w(t) − g′(w(t))
g′′(w(t))

.

In first-order gradient descent we replace 1/g′′(w(t)) with a time dependent constant η(t).
This gives the update rule

w(t+1) = w(t) − η(t)g′(w(t)).

The constant η(t) is called the step size or learning rate. This allows us to avoid computing
the second derivative of g(w). However, the tradeoff is that if we select a bad η(t) the
method may take longer to converge to w∗, or may not converge at all.
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Remark: Notice that we call this method "first-order" gradient descent; however, we
do not use a first order approximation of g(w). Instead the term first-order here refers
to the fact that we are only using the first derivative of g(w). Often when people refer
to gradient descent they are referring to first-order gradient descent. As such, we will use
the term gradient descent to refer to first-order gradient descent for the remainder of these
notes. This is also the reason we have put "first-order" in parentheses in the title of this
section.

To help build some intuition behind the first-order gradient descent method, and the
role of the step size we go over several examples. First, we begin by reinterpreting the
examples from the previous section.
Example 6.13: Recall the function g(w) = w2+ew from Example 6.12. Its first derivative
is g′(w) = 2w+ ew and second derivative is g′′(w) = 2 + ew. As before we select w(0) = 1. If
we set η(t) = 1/g′′(w(t)) then the second-order gradient descent update rule can be viewed
as a first-order gradient descent update rule.

w(1) = w(0) − η(0)g′(w(0)).
Now, we provide an interpretation of this update rule, through the lense of taking steps in
the negative direction of the gradient (which is the same as the derivative in the univariate
case). Recall from Section 6.2 that the gradient g′(w(0)) is the rate of change of g(w) at w(0).
Notice that when the gradient is positive, increasing w will increase g(w), while when the
gradient is negative, decreasing w will increase g(w). Conveniently, the sign (or direction)
of the gradient tells us if we should increase or decrease w to increase g(w). However, we
are interested in minimizing g(w), so we want to decrease g(w). As such, we want to take
steps in the negative direction of the gradient (i.e. −g′(w(0))). The step size η(0) determines
how large of a step we take in the negative direction of the gradient.

Thus, we can interpret the first-order gradient descent update rule as starting from w(0)

and taking a step of size η(0)g′(w(0)) in the negative direction of the gradient. Visually,
we can see this on the left in Fig. 6.13. The orange dotted line represents the tangent

Figure 6.13: Left: Taking a step in the negative direction of the gradient g′(w) at w(0) = 1.
Right: Taking a step in the negative direction of the gradient g′(w) at w(1) = 0.

line to g(w) at w(0) = 1. The slope of this line is the gradient g′(w(0)) = 2 + e, which is
positive. Thus, the negative direction of the gradient is to the left. After taking a step
of size η(0)g′(w(0)) = 1

2+e(2 + e) = 1 in the negative direction of the gradient we arrive at
w(1) = 0, which is indeed left of w(0) = 1. The vertical green dotted line depicts w(1) = 0.
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We can repeat this process to get w(2). We can see this visually on the right in Fig. 6.13.
The green dotted line represents the tangent line to g(w) at w(1) = 0. The slope of this line
is the gradient g′(w(1)) = 1, which is positive. Thus, the negative direction of the gradient
is again to the left. After, taking a step of size η(1)g′(w(1)) = 1

3(1) = 1/3 in the negative
direction of the gradient we arrive at w(2) = −1/3, which is indeed left of w(1) = 0. The
vertical purple dotted line depicts w(2) = −1/3. �

The above example provides some intuition behind the name "gradient descent". The
gradient gives us the direction that increases the function (the ascent direction). Thus, the
negative gradient gives us the direction of descent. The step size η(t) determines how large
of a step we take in the negative direction of the gradient. In the previous example we
chose the step size to be 1/g′′(w(t)), which depended on the second derivative of g(w). At
the beginning of this section we explained that the benefit of first-order gradient descent is
that it avoids computing the second derivative of g(w). As such, in the next two examples
we will explore what happens if we do not choose the step size to be 1/g′′(w(t)).
Example 6.14: [Small step size] We continue with the function g(w) = w2 + ew and initial
point w(0) = 1 from Example 6.13. However, now we select a small step size η(t) = 0.1 for
all t ∈ N. The first step gives us

w(1) = 1− 0.1(2 · 1 + e1) ≈ 0.528.

The second step gives us

w(2) = 0.528− 0.1(2 · 0.528 + e0.528) ≈ 0.253.

This is visualized in Fig. 6.14. We called this a "small" step size because it is smaller than

Figure 6.14: Gradient descent with small step size.

1/g′′(w(0)) = 1/(2 + e) and 1/g′′(w(1)) = 1/3. We can see that a small step size causes
for the steps to be smaller and thus w(2) is further from w∗ in this example than it was in
Example 6.13. In general, a small step size will cause the method to take longer to converge
to w∗. �

Example 6.15: [Large step size] We again continue with the function g(w) = w2 + ew and
initial point w(0) = 1 from Example 6.13. However, now we select a large step size η(t) = 1
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for all t ∈ N. The first step gives us

w(1) = 1− 1(2 · 1 + e1) ≈ −3.72.

The second step gives us

w(2) = −3.72− 1(2 · −3.72 + e−3.72) ≈ 3.696.

This is visualized in Fig. 6.15. We can see that a large step size causes for the steps to

Figure 6.15: Gradient descent with large step size.

be larger, which means we can overshoot w∗. In particular, if we look at the plot we can
see that w(1) is to the left of w∗, which means our step from w(0) to w(1) was too large.
Similarly, w(2) is to the right of w∗, which means our step from w(1) to w(2) was also too
large. In some cases, if the steps are too large the method may not even converge to w∗,
and just keep oscillating around it. �

The above two examples highlight the importance of selecting a good step size. If the
step size is too small the method may take longer to converge to w∗, while if the step size
is too large the method may not converge at all. Selecting a small step is a safe choice,
since it will usually converge to w∗, but it may take a long time. In Section 6.4.4 we will
discuss some methods for selecting the step size. But first we discuss gradient descent in
the multivariate case.

6.4.3 Multivariate Gradient Descent

Let g : Rd → R be a function of d > 1 variables. Our goal is to find

w∗ = (w∗1, . . . , w∗d) = argmin
w∈Rd

g(w).

If g(w) is convex, then we can use gradient descent to find w∗. The gradient descent update
rule is

w(t+1) = w(t) − η(t)∇g(w(t)), where ∇g(w) =
(
∂g

∂w1
(w), . . . , ∂g

∂wd
(w)

)>
∈ Rd
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is the gradient of g(w), and η(t) is the step size at iteration t ∈ N. This update rule is the
multivariate version of the univariate update rule we saw in Section 6.4.2. The intuition
behind the multivariate update rule is the same as the univariate update rule. The gradient
∇g(w(t)) gives us the direction of ascent of g(w) at w(t). Thus, the negative gradient
−∇g(w(t)) gives us the direction of descent. The step size η(t) determines how large of a
step we take in the negative direction of the gradient.

Remark: Notice that we have not mentioned second-order gradient descent in the
multivariate case. The reason for this is that the update rule for second-order gradient
descent is more complicated in the multivariate case. The second derivative of g(w) would
now have to be replaced with something called the Hessian matrix, which is a d by d
matrix of second partial derivatives of g(w). The Hessian matrix is more computationally
expensive to compute than the gradient, and as such is not used as often in practice. For
the remainder of these notes we will focus on first-order gradient descent.
Example 6.16: Let g(w) = g(w1, w2) = w2

1 + w2
2 + ew1 + ew2 , where w ∈ R2. Let our

initial point be w(0) = (1, 1)>, and learning rate η(t) = 1/(2 + e) for all t ∈ N. The gradient
of g(w) is

∇g(w) =
(
∂g

∂w1
(w), ∂g

∂w2
(w)

)>
= (2w1 + ew1 , 2w2 + ew2)> .

The first step of gradient descent gives us

w(1) = w(0) − η(0)∇g(w(0)) = (1, 1)> − 1
2 + e

(2 + e, 2 + e)> = (1, 1)> − (1, 1)> = (0, 0)>.

The second step of gradient descent gives us

w(2) = w(1) − η(1)∇g(w(1)) = (0, 0)> − 1
2 + e

(1, 1)> =
(
− 1

2 + e
,− 1

2 + e

)>
.

This is visualized in Fig. 6.16 by a 3D plot of g(w1, w2). We can see that each step of

Figure 6.16: Gradient descent for g(w1, w2) = w2
1 + w2

2 + ew1 + ew2.

gradient descent takes us closer to the minimizer of g(w1, w2). To build further intuition,
we can visualize the steps in the w1 and w2 plane. On the left in Fig. 6.17 we have a contour
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Figure 6.17: Left: Contour plot of g(w1, w2) = w2
1 +w2

2 +ew1 +ew2. Right: Negative gradient
at different points in the w1 and w2 plane.

plot of g(w1, w2), where the colors of the contours represent the value of g(w1, w2). The
darkest blue area represents the smallest value of g(w1, w2). It can be seen that the steps
w(1), and w(2) are moving towards the dark blue region. We can also visualize the negative
gradients, as shown on the right in Fig. 6.17. The arrows represent the negative gradient
at different points in the w1 and w2 plane. We can see that the negative gradients point
towards the dark blue region, which is the direction of descent. Also, our steps w(1) and
w(2) were taken in the direction of the negative gradient, as expected. �

In general, we will take more than 2 steps of gradient descent to get a better approxi-
mation of the minimizer of g(w). We show what taking 9 steps of gradient descent looks
like for a more complicated function in the next example.
Example 6.17: Let g(w) = g(w1, w2) = (1 − w1)2 + 100(w2 − w2

1)2, where w ∈ R2. Let
our initial point be w(0) = (1.7,−0.8)>, and learning rate η(t) = 1/6 for all t ∈ N. We
avoid explicitly calculating all 9 steps of gradient descent, and instead visualize the steps
in Fig. 6.18. We can see that each step of gradient descent takes us closer to the minimizer

Figure 6.18: Gradient descent for g(w1, w2) = (1− w1)2 + 100(w2 − w2
1)2.

of g(w1, w2). Similar to the previous example, we can visualize the steps in the w1 and w2
plane. On the left in Fig. 6.19 we have a contour plot of g(w1, w2), where the colors of the
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Figure 6.19: Left: Contour plot of g(w1, w2) = (1−w1)2 + 100(w2 −w2
1)2. Right: Negative

gradient at different points in the w1 and w2 plane.

contours represent the value of g(w1, w2). While on the right we have the negative gradient
at different points in the w1 and w2 plane. �

In general, if the step size η(t) goes to zero as t goes to infinity, then the sequence of
parameters w(t) will approach the minimizer of g(w) as t goes to infinity2. The high level
intuition for why the step size has to go to zero is that as we get closer to the minimizer of
g(w), we need to take smaller steps to avoid overshooting the minimizer. If the step size
is kept constant that means we could constantly oscillate around the minimizer, and never
actually converge to it.

In the above examples we chose d = 2 to be able to visualize the steps of gradient
descent. The same intuition applies for d > 2, but we cannot visualize the steps.
Exercise 6.1: You are minimizing a function g : Rd → R by using gradient descent
with an initial point w(0) and step size η(t) = η for all t ∈ N. You run gradient descent
for T = 106 iterations and get the parameter w(T ). Can you be certain that w(T ) = w∗ =
argminw∈Rd g(w)? �

6.4.4 Selecting the Step Size

In Section 6.4.2 we discussed the importance of selecting a good step size. However, we did
not discuss how to select the step size. In this section we discuss some common choices for
the step size. The following definitions are for all t ∈ N.

1. Constant: One simple method is to select a constant step size

η(t) = η where η ∈ (0,∞).

2. Inverse decaying: Another method is to select a step size that decreases as t in-
creases in an inverse manner

η(t) = η

1 + λt
where η, λ ∈ (0,∞).

2Actually, not only does the step size have to go to zero as t goes to infinity, but it also has to satisfy
some other conditions saying it decreases quickly enough.
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The rational behind this method is that as t increases the step size decreases, which
allows for smaller steps as we get closer to w∗.

3. Exponential decaying: A third method is to select a step size that decreases expo-
nentially as t increases

η(t) = ηe−λt where η, λ ∈ (0, 1).

This method is similar to the inverse decaying step size, but the step size decreases
faster as t increases, due to the exponential term.

4. Normalized gradient: A slightly more sophisticated method than the previous ones
is to normalize by the gradient

η(t) = η

ε+ ‖∇g(w(t))‖
where η, ε ∈ (0,∞),

and

‖∇g(w(t))‖ =

√√√√√ d∑
j=1

(
∂g

∂wj
(w(t))

)2

.

The value of ε is usually set to a small positive number to avoid division by zero (ex:
ε = 10−8). The term ‖∇g(w(t))‖ is called the 2-norm of the gradient, which is a
measure of the magnitude of the gradient. Dividing by the magnitude of a vector is
called normalizing by the vector.
To understand the rational behind this method recall that we take steps −η(t)∇g(w(t))
in gradient descent. If the gradient g(w(t)) is large (in magnitude), then the step
−η(t)∇g(w(t)) will be large, and if the gradient is small, then the step will be small.
To make sure we do no overshoot the minimum with each step, we choose the step
size η(t) to be inversely proportional to the magnitude of the gradient. This way if
the gradient is large, the step size will be small, and if the gradient is small, the step
size η(t) will be large.

The above methods are just a few of the many methods for selecting the step size. In
practice, the step size is often selected through trial and error, by trying different step sizes
and seeing which one works best.
Exercise 6.2: Suppose you are using an exponential decaying step size. Is there some
way to set the parameters η and λ so that you are using a constant step size? �

6.5 Gradient Descent for Linear Regression
In this section we will apply gradient descent to the linear regression problem we discussed
in Section 6.3. Recall that in linear regression we have a dataset

D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, where X = Rd+1,Y = R.
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The function class is the set of all linear functions

F = {f |f : Rd+1 → R, and f(x) = x>w, for some w ∈ Rd+1}.

The loss function is the squared loss `(ŷ, y) = (ŷ − y)2, where ŷ, y ∈ R. The objective is to
find

ŵ = argmin
w∈Rd+1

L̂(w), where L̂(w) = 1
n

n∑
i=1

(x>i w− yi)2.

The function L̂(w) is convex, and in Section 6.3 we derived a closed form solution for ŵ.
Next, we will apply gradient descent to find an approximation of ŵ.

6.5.1 Batch Gradient Descent

The gradient descent update rule for t ∈ N is

w(t+1) = w(t) − η(t)∇L̂(w(t)),

where η(t) is the step size at iteration t ∈ N, and ∇L̂(w(t)) is the gradient of L̂(w) at w(t).
Recall from Section 6.3 that the partial derivative of L̂(w) with respect to wj is

∂L̂(w)
∂wj

= 2
n

n∑
i=1

(x>i w− yi)xij ,

Thus, the gradient of L̂(w) is

∇L̂(w) =
(

2
n

n∑
i=1

(x>i w− yi)xi1, . . . ,
2
n

n∑
i=1

(x>i w− yi)xid
)>

= 2
n

n∑
i=1

(x>i w− yi) (xi1, . . . , xid)>

= 2
n

n∑
i=1

(x>i w− yi)xi.

The gradient descent update rule is

w(t+1) = w(t) − η(t) 2
n

n∑
i=1

(x>i w(t) − yi)xi.

This is called the batch gradient descent (BGD) update rule. The reason for the name
"batch" is that we are using all n data points in L̂(w) to estimate L(w) = E

[
(x>w− y)2

]
.

We will see in the next section that there are other versions of gradient descent that do not
use all n data points to estimate L(w).
Exercise 6.3: What would the BGD update rule be if we used the loss function `(ŷ, y) =
(ŷ − y)4? In the 1-dimensional case, with no bias term (i.e. w ∈ R), is L̂(w) convex? �

The learner A : (X × Y)n → F that uses BGD is then defined as

A(D) = f̂ where f̂(x) = x>w(T ),
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Algorithm 2: BGD Linear Regression Learner (with a constant step size)
1: input: D = ((x1, y1), . . . , (xn, yn)), step size η, number of epochs T
2: w← random vector in Rd+1

3: for t = 1, . . . , T do
4: ∇L̂(w)← 2

n

∑n
i=1(x>i w− yi)xi

5: w← w− η∇L̂(w)
6: return f̂(x) = xTw

and w(0) is randomly initialized. The number of iterations T ∈ N is often called the number
of epochs.

In pseudocode, the learner A is defined as in algorithm 2. In the algorithm 2 we used
a constant step size η; however, we could have used any of the step sizes we discussed in
Section 6.4.4.
Exercise 6.4: Write the pseudocode for BGD with an exponential decaying step size. �

The larger T is, the closer w(T ) will be to ŵ. Notice that unlike the closed form solution
from Section 6.3, BGD does not give us an exact solution to the linear regression problem.
Example 6.18: We can visualize the progress of BGD by plotting the predictor f̂(x) =
x>w(t) after t = 0, 5, 10 epochs (Fig. 6.20). As the number epochs increases, the BGD
predictor x>w(t) gets closer to the closed form predictor f̂(x) = x>ŵ. �

Figure 6.20: The predictor f̂(x) = x>w(t) after t = 0, 5, 10 epochs of BGD compares to the
closed form predictor f̂(x) = x>ŵ.

We mentioned in Section 6.4 that gradient descent is useful when a closed form solution
does not exist. In this case a closed form solution does exist; however, when we deal with
classification problems in Chapter 9 we will see that a closed form solution does not exist,
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and gradient descent is a useful tool to find an approximate solution. Even though a closed
form solution exists for linear regression, BGD can still have an advantage when considering
the computational cost.

Computational Cost: Closed Form Solution vs. Batch Gradient Descent

First we should define what we mean by computational cost. We will use the imprecise
definition that the computational cost of an algorithm is the total amount of elementary
operations the algorithm performs. Elementary operations are operations that can be per-
formed in a constant amount of time by a computer (ex: addition, multiplication, etc.).
The "big O" notation will also be useful, which is a way to describe the growth rate of a
function. If f(n) is a function of n, then f(n) = O(g(n)) if there exists a constant c > 0 and
n0 ∈ N such that f(n) ≤ cg(n) for all n ≥ n0. In other words, f(n) grows at most as fast
as g(n) for large n. For instance if f(n) = 3n2 + 2n + 1, then f(n) = O(n2). Multiplying
by constants or adding terms like 2n that grow slower than n2 do not change the growth
rate of f(n).

Let us now study the computational cost of the closed form solution for linear regression

ŵ = A−1b where A =
n∑
i=1

xix>i , b =
n∑
i=1

yixi.

Computing A requires O(d2n) operations since computing xix>i requires O((d+1)2) = O(d2)
operations, and we have to do this for all n data points. Computing b requires O(dn)
operations since computing yixi requires O(d + 1) = O(d) operations, and we have to do
this for all n data points. Computing A−1 requires O((d+ 1)3) = O(d3) operations, which
is well known result for computing the inverse of a d + 1 by d + 1 matrix3. The matrix
multiplication A−1b requires O((d+1)2) = O(d2) operations. The total computational cost
of the closed form solution is O(d2n+ dn+ d3 + d2) = O(d2n+ d3).

Next, let us study the computational cost of BGD for linear regression, defined in
algorithm 2. Computing (x>i w−yi)xi requires O(d+1+d+1+d+1) = O(d) operations, since
we have to compute x>i w subtract yi, and multiply by xi, each taking O(d+ 1) operations.
Computing ∇L̂(w) requires O(dn) operations, since we have to compute (x>i w− yi)xi for
all n data points. The update rule w ← w − η∇L̂(w) requires O(d + 1 + d + 1) = O(d)
operations, since we have to multiply ∇L̂(w) by η and subtract from w. Since this update
rule is repeated T times, the total computational cost of BGD is O((dn+ d)T ) = O(dnT ).

Thus, the computational cost of BGD is O(dnT ), while the computational cost of the
closed form solution is O(d2n+d3). If T < d, then O(dnT ) < O(d2n) ≤ O(d2n+d3). Which
implies that when the number of epochs T is less than the number of features d, BGD is
computationally cheaper than the closed form solution. In some machine learning problems
the number of features d can be very large, and in these cases BGD can be computationally
cheaper than the closed form solution. For example, if you are trying to predict a persons
level of risk for a disease based on their genetic information, the number of features d can
be in the tens of thousands (representing the expression level of each gene), while running
BGD for a few hundred epochs can often be enough to reach a good solution.

3There are methods for computing an inverse that are slightly more efficient than O(d3).
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This still may not seem like a big advantage. Next, we introduce another version of
gradient descent called mini-batch gradient descent, which can be computationally cheaper
than BGD.

6.5.2 Mini-Batch Gradient Descent

In mini-batch gradient descent (MBGD) we use subsets of the dataset to estimate L(w) =
E
[
(x>w− y)2

]
, and then take gradient steps based on these estimates. We describe this

process in more detail below.
A subset of the dataset is called a mini-batch, and the size of the mini-batch is often

denoted by b ∈ N. If the number of data points n is divisible by b, then we can think of the
dataset as split into M = n/b mini-batches. Visually, we can see this as follows

D =

(x1, y1), . . . , (xb, yb)︸ ︷︷ ︸
mini-batch 1

, (xb+1, yb+1), . . . , (x2b, y2b)︸ ︷︷ ︸
mini-batch 2

, . . . , (x(M−1)b+1, y(M−1)b+1), . . . , (xn, yn)︸ ︷︷ ︸
mini-batch M

 .

Example 6.19: Let n = 8, b = 2 then M = 8/2 = 4, and the dataset can be visualized as

D =

(x1, y1), (x2, y2)︸ ︷︷ ︸
mini-batch 1

, (x3, y3), (x4, y4)︸ ︷︷ ︸
mini-batch 2

, (x5, y5), (x6, y6)︸ ︷︷ ︸
mini-batch 3

, (x7, y7), (x8, y8)︸ ︷︷ ︸
mini-batch 4

 .
The number of mini-batches is M = 4. �

In general, n is not divisible by b, so we define M = floor(nb ) ∈ N, which is just n
b

rounded down to the nearest integer. To avoid notational clutter, if n is not divisible by b,
we will simply not use the last n−Mb data points from the dataset in the following steps
and definitions4.

For each mini-batch m ∈ {1, . . . ,M} we have a sample mean estimate of the expected
loss

L̂m(w) = 1
b

mb∑
i=(m−1)b+1

(x>i w− yi)2.

Exercise 6.5: Suppose that when n/b was not an integer we did not discard the last
n−Mb data points from the dataset, and instead used them in the last mini-batch M + 1.
What would the sample mean estimate L̂M+1(w) be? �

During an epoch t ∈ N, the MBGD learner updates the weight vector w for each mini-
batch m ∈ {1, . . . ,M} using the update rule

w(t,m+1) = w(t,m) − η(t)∇L̂m(w(t,m)).
4In practice the last n − Mb data points are not discarded, but rather used in the last mini-batch.

However, not doing so does not affect the main idea of MBGD and makes the presentation much cleaner for
these course notes.
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Once the final mini-batch M is reached, the learner updates the weight vector w for the
next epoch t+ 1 using the update rule

w(t+1,1) = w(t,M+1) − η(t)∇L̂1(w(t,M+1)).

This is repeated for T epochs. An important note is that before each epoch t, the dataset
D should be shuffled, so that the order of the data points is random for each epoch. This
means that the estimate of the expected loss L̂m(w) is different for each epoch, since the
data points in each mini-batch are different. We will not formally show why this is helpful,
but roughly speaking it improves the average L̂m(w) over all epochs.

The MBGD learner A : (X × Y)n → F is defined as

A(D) = f̂ where f̂(x) = x>w(T,M+1),

and w(0,1) is randomly initialized. The pseudocode for learner A is given in algorithm 3

Algorithm 3: MBGD Linear Regression Learner (with a constant step size)
1: input:
D = ((x1, y1), . . . , (xn, yn)), step size η, number of epochs T, mini-batch size b

2: w← random vector in Rd+1

3: M ← floor(nb )
4: for t = 1, . . . , T do
5: randomly shuffle D
6: for m = 1, . . . ,M do
7: ∇L̂m(w)← 2

b

∑mb
i=(m−1)b+1(x>i w− yi)xi

8: w← w− η∇L̂m(w)
9: return f̂(x) = xTw

Notice that there are T ·M updates to w in MBGD. If b = n, then MBGD is equivalent
to BGD. If b = 1, then MBGD is called stochastic gradient descent (SGD).

Now, we will compare MBGD to BGD, for the case where b < n. In MBGD, notice that
the sample mean estimate L̂(w) uses b data points. This is in contrast to the sample mean
estimate L̂(w) in BGD, which used all n data points. Let us treat our dataset as a random
variable D momentarily. In Chapter 5 we learned that the expected value of L̂(w) is L(w),
and for the same reasons, the expected value of L̂m(w) is also L(w). This is a desirable
property, since we want our sample mean estimate to be close to the expected value of the
loss. In Chapter 5, we also learned that the variance of L̂(w) scales as 1/n, where n is
the number of data points. Similarly, the variance of L̂m(w) scales as 1/b, where b is the
size of the mini-batch. Thus, the variance of L̂(w) is smaller than the variance of L̂m(w),
since n ≥ b. This implies that if we randomly sample a dataset D from the distribution of
datasets PD, then L̂(w) is more likely to be close to L(w) than L̂m(w). For this reason we
say that L̂(w) is a better estimate of L(w) than L̂m(w).

At this point it may seem that MBGD is strictly worse than BGD, since we are using a
worse estimate of L(w). However, to see the advantage of MBGD, we need to consider the
computational cost.
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Computational Cost: Batch Gradient Descent vs. Mini-Batch Gradient Descent

In Section 6.5.1 we showed that the computational cost of BGD is O(dnT ). Next, we will
calculate the computational cost of MBGD. The steps are almost identical to BGD, except
that we have and extra loop over all the mini-batches. First, the computational cost of
computing (x>i w − yi)xi is O(d). Computing ∇L̂m(w) requires O(db) operations, since
we have to compute (x>i w − yi)xi for all b data points in the mini-batch. The update
rule w ← w − η∇L̂m(w) requires O(d) operations. After the inner loop over all mini-
batches, the computational cost is O((db+ d)M) = O(dbM). Shuffling the dataset requires
O(n) = O(bM) operations. Thus, the total computational cost of MBGD is O((dbM +
bM)T ) = O(dbMT ), since the outer loop over all epochs is repeated T times.

The computational cost of MBGD is O(dbMT ), while the computational cost of BGD
is O(dnT ). But, O(bM) = O(n), which implies that O(dbMT ) = O(dnT ). This means that
for the same number of epochs T the computational cost of MBGD is the same as BGD.
However, the number of gradient steps that MBGD takes is T ·M , while the number of
gradient steps that BGD takes is T . As we discussed earlier, the gradient steps in MBGD
are based on a worse estimate of L(w) than in BGD. In practice it turns out that the
increase in the number of gradient steps in MBGD is usually worth the decrease in the
quality of the estimate of L(w). Often, choosing b to be a relatively small number (ex:
b = 32) will lead to a better solution than BGD, for the same number of epochs T .

6.6 Polynomial Regression
Polynomial regression is just the regression setting, but we select the function class F to be
the set of all polynomial functions up to some degree, instead of just linear functions. To
motivate the need for selecting a function class that is more expressive than linear functions,
consider the following example.
Example 6.20: Suppose you are trying to predict the price of a car based on its age.
The dataset D could look like that shown on the left in Fig. 6.21. Notice how the price of a

Figure 6.21: Left: Dataset for polynomial regression. Right: Linear and polynomial fit to
the dataset.
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car is not linearly related to its age. In particular, the price of a car initially decreases with
age, but then after a certain age the car is considered an antique and the price increases. A
linear function will not be able to capture this relationship. Instead we might want to use a
polynomial function to capture this relationship. On the right in Fig. 6.21 we show a linear
(red) and polynomial (purple) fit to the dataset. Clearly, using a polynomial function is a
better choice in this case.

In this example d = 1,X = R1+1 = R2, and Y = R since we are in the regression setting.
Recall that a linear function is of the form

f(x) = x>w = w0 + x1w1 where w ∈ R2.

The function class containing all linear functions is

F1 = {f |f : R2 → R, and f(x) = x>w, for some w ∈ R2}.

We have used the subscript 1 to denote that this is the function class containing all linear
functions, which are polynomial functions of degree 1 or less. The red line in Fig. 6.21 is a
linear function, which is an element of F1.

A polynomial function of degree 2 or less is of the form

f(x) = w0 + x1w1 + x2
1w2 = φ2(x)>w,

where w = (w0, w1, w2)> ∈ R3 and φ2(x) = (1, x1, x
2
1)> ∈ R3 is called a feature map. Notice

that a degree 2 polynomial function is just a linear function of the transformed input φ2(x).
We can write the function class containing all polynomials of degree 2 or less as

F2 = {f |f : R2 → R, and f(x) = φ2(x)>w, for some w ∈ R3}.

The subscript 2 denotes that this is the function class containing all polynomial functions of
degree 2 or less. The purple quadratic curve in Fig. 6.21 is a polynomial function of degree
2, which is an element of F2. Also notice that F1 ⊂ F2, since a linear function would just
have w2 = 0.

If we wanted, we could use an even higher degree polynomial function to fit the dataset.
For instance, a polynomial function of degree 3 or less is of the form

f(x) = w0 + x1w1 + x2
1w2 + x3

1w3 = φ3(x)>w,

where w = (w0, w1, w2, w3)> ∈ R4 and φ3(x) = (1, x1, x
2
1, x

3
1)> ∈ R4. The function class

containing all polynomials of degree 3 or less is

F3 = {f |f : R2 → R, and f(x) = φ3(x)>w, for some w ∈ R4}.

Notice again that F2 ⊂ F3. We can continue this process for any degree p. �

The above example shows how using a polynomial function can be useful in regression
problems. However, the example only considered the case when d = 1. The definition of
the feature map φp(x) for a polynomial function of degree p is a bit more complicated when
d > 1. In the next example we show how to define the feature map φp(x) when d = 2, and
then after the example we give the general definition for any degree p.
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Example 6.21: Let d = 2, then X = R2+1 = R3, and Y = R. A linear function is of the
form

f(x) = x>w = w0 + x1w1 + x2w2 where w ∈ R3.

The function class containing all linear functions is

F1 = {f |f : R3 → R, and f(x) = x>w, for some w ∈ R3}.

A polynomial function of degree 2 or less is of the form

f(x) = w0 + x1w1 + x2w2 + x2
1w3 + x1x2w4 + x2

2w5 = φ2(x)>w,

where w = (w0, w1, w2, w3, w4, w5)> ∈ R6 and φ2(x) = (1, x1, x2, x
2
1, x1x2, x

2
2)> ∈ R6. No-

tice how the feature map φ2(x) considers all possible products of the input features x1, x2
up to degree 2. The function class containing all polynomials of degree 2 or less is

F2 = {f |f : R3 → R, and f(x) = φ2(x)>w, for some w ∈ R6}.

A polynomial function of degree 3 or less is of the form

f(x) = w0 + x1w1 + x2w2 + x2
1w3 + x1x2w4 + x2

2w5 + x3
1w6 + x2

1x2w7 + x1x
2
2w8 + x3

2w9

= φ3(x)>w,

where

w = (w0, w1, w2, w3, w4, w5, w6, w7, w8, w9)> ∈ R10,

φ3(x) = (1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2)> ∈ R10.

The function class containing all polynomials of degree 3 or less is

F3 = {f |f : R3 → R, and f(x) = φ3(x)>w, for some w ∈ R10}.

�

In general, the feature map φp(x) for a polynomial function of degree p considers all
possible products of the input features x0, x1, . . . , xd up to degree p. This means φp :
Rd+1 → Rp̄ where p̄ =

(d+p
p

)
. The equation for p̄ can be derived by considering the number

of ways to choose p elements from a set of d + 1 elements with replacement, which is((d+1)+p−1
p

)
=
(d+p
p

)
. We can double check that this equation is correct by considering the

examples we have seen so far. For d = 1, p = 2, we have p̄ =
(1+2

2
)

= 3, and if p = 3 then
p̄ =

(1+3
3
)

= 4, which agrees Example 6.20. If d = 2, p = 2, we have p̄ =
(2+2

2
)

= 6, which
agrees with Example 6.21.

The function class containing all polynomial functions of degree p or less is

Fp = {f |f : Rd+1 → R, and f(x) = φp(x)>w, for some w ∈ Rp̄}.

As we increase the degree p, the function class Fp becomes more expressive, since it can
capture more complex relationships between the input features. In particular, F1 ⊂ F2 ⊂
F3 ⊂ . . .. Thus, as p increases the function class Fp contains a predictor f̂p that can fit the
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Figure 6.22: Predictors of various polynomial degrees fit to a dataset.

dataset at least as well as any predictor f̂p−1 in Fp−1, since f̂p could always be chosen to
be f̂p−1. This can be seen in Fig. 6.22, where we fit a dataset with predictors of various
polynomial degrees.
Exercise 6.6: If f3 ∈ F3, can we be certain that f3 ∈ F2 or that f3 ∈ F4? �

Exercise 6.7: Let d = 3, and p = 2. What is p̄? Write the feature map φp(x). �

The linear function class is actually a special case of the polynomial function class, where
p = 1. Then φ1(x) = x and p̄ =

(d+1
1
)

= d + 1, giving back the linear function class F ,
which we have seen in the previous sections. Also, Fp looks similar to the linear function
class, except the feature vector x is now replaced by the feature map φp(x), and the weight
vector w is now in Rp̄ instead of Rd+1. For this reason, Fp can be thought of as the function
class containing all linear functions of the transformed input φp(x). This turns out to be
very useful, since the closed form solution and gradient descent algorithms we have seen so
far for linear regression, can be applied to polynomial regression by simply replacing x with
φp(x) and using w ∈ Rp̄ everywhere.

An important consequence of the property that F1 ⊂ F2 ⊂ F3 ⊂ . . . is that

min
f∈F1

L̂(f) ≥ min
f∈F2

L̂(f) ≥ min
f∈F3

L̂(f) ≥ . . . .

To see why this holds suppose that f̂p−1 = minf∈Fp−1 L̂(f). Then we know that f̂p−1 ∈ Fp,
since Fp−1 ⊂ Fp. Let f̂p = minf∈Fp L̂(f). Notice how f̂p could be equal to f̂p−1, but it could
also be a different function. If it is a different function, then it must make L̂(f) smaller,
since otherwise it wouldn’t be the minimizer of L̂(f) over Fp. Thus, L̂(f̂p) ≤ L̂(f̂p−1) which
is the same as minf∈Fp L̂(f) ≤ minf∈Fp−1 L̂(f) by definition of f̂p and f̂p−1. If we plot the
minimum loss minf∈Fp L̂(f) as a function of p, we would see a decreasing curve (shown in
Fig. 6.23). At this point you might be wondering why we don’t just use the function class
Fp with the highest degree p. Of course, the computational cost will increase as p increases,
since the dimension of the weight vector w is increasing; however, there turns out to be
an even more important reason. We will find that as p increases, the estimated loss of the
predictor our learner outputs L̂(f̂p) will become a worse estimate of the true loss L(f̂p).
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Figure 6.23: minf∈Fp L̂(f) as a function of the degree p of the polynomial function.

The next chapter is dedicated to understanding this phenomenon, and how to evaluate if
the predictor our learner outputs is good at predicting the label based on new data points.
Exercise 6.8: Suppose that

F̄p = {f |f : Rd+1 → R, and f(x) = exp(φp(x)>w), for some w ∈ Rp̄}.

Is it true that F̄1 ⊂ F̄2? Is it true that F1 ⊂ F̄1? Is it true that F̄1 ⊂ F1? Is it true that
minf∈F̄1

L̂(f) ≤ minf∈F̄2
L̂(f)? �

Exercise 6.9: Suppose you want to find f̂1 = minf∈F1 L̂(f), and f̂2 = minf∈F2 L̂(f). To
do this you decide to use batch gradient descent. Let L̂p(w) = 1

n

∑n
i=1(φp(xi)>w − yi)2.

You run BGD on the function L̂1(w) for T = 100 epochs, and get w(100)
1 . You run BGD

on the function L̂2(w) for T = 1000 epochs, and get w(1000)
2 . You are told that for both

cases the number of iterations T that BGD is run for is likely enough for it to reach a good
approximation of the minimizer.

Can you be certain that L̂1(w(100)
1 ) ≥ L̂2(w(1000)

2 )? Do you think it is likely that
L̂1(w(100)

1 ) ≥ L̂2(w(1000)
2 )? �

To conclude we provide the pseudocode for the degree 2 polynomial feature map φ2(x)
in algorithm 4. The idea behind the implementation is to construct all possible pairs of the
input features x0, x1, . . . , xd without including any duplicates. This can be done by having
an outer loop over all features, and an inner loop that starts at the index of the outer loop
and goes to the end of the features. This way we avoid duplicates, since we only consider
pairs (xk, xl) where k ≤ l. If we wanted a degree 3 polynomial feature map, we would need
to construct all possible triples of the input features. This would require a triple nested loop.
In general if you wanted a degree p polynomial feature map, you would need to construct
all possible p-tuples of the input features, which would require a p nested loop. There are
more efficient ways to construct the polynomial feature map, but the nested loop method
is the most intuitive and easiest to understand for the purposes of these course notes.
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Algorithm 4: Degree 2 Polynomial Feature Map
1: input: feature vector x = (x0 = 1, x1, . . . , xd)> ∈ Rd+1

2: p̄← (d+ 1)(d+ 2)/2
3: ϕ← (ϕ0 = 0, ϕ1 = 0, . . . , ϕp̄−1 = 0)> ∈ Rp̄
4: j ← 0
5: for k = 0, . . . , d do
6: for l = k, . . . , d do
7: ϕj = xk · xl
8: j = j + 1
9: return ϕ

Exercise 6.10: Write the pseudocode for the degree 3 polynomial feature map φ3(x). �
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Chapter 7

Evaluating Predictors

In the last chapter we concluded our discussion with a question: what is the expected loss
of the predictor output by an ERM learner? In particular, if A(D) = f̂ is the predictor
output by an ERM learner (Definition 1), then what is L(f̂)? Answering this question gives
an evaluation of the predictor output by the ERM learner.

When we studied how to optimize the estimated loss L̂ in Chapter 6, we assumed the
dataset D was fixed. However, in Chapter 4 we discussed that in general the dataset is a
random variable D. Our objective was then to define a learner A that that has a small
expected loss in expectation over datasets D. More precisely, the learner should make
E[L(A(D))] small. Evaluating how well the ERM learner does at achieving this objective
is the goal of this chapter.

7.1 Estimated vs. Expected Loss of a Predictor

Suppose that the learner has found the predictor f̂D that minimizes the estimated loss over
some function class F . Formally, let

A(D) = f̂D where f̂D = argmin
f∈F

L̂(f).

We have added the subscript D to f̂ to emphasize that the predictor output by the learner
depends on the random dataset D, thus, is itself a random variable (which will be important
to remember in the following discussion).

Since f̂D is the minimizer of the estimated loss L̂, but a good predictor would be one that
minimizes the expected loss L, it is useful to compare these two quantities. In particular,
we will would like to know how large the difference between the estimated and expected
loss is in expectation over datasets D.

E[L(f̂D)]− E[L̂(f̂D)]. (7.1)

The expectation over datasets is needed since the predictor f̂D is a random variable. It can
be shown that the above quantity satisfies the following two properties:

1. is always non-negative,

2. increases if the the function class F gets larger,

3. and decreases if the number of samples n in the dataset D increases.
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We will not formally prove the properties here, since it is requires some technical machinery
we have not discussed; however, we will try to give some intuition for why these statements
are true.

Recall that for a fixed predictor f ∈ F , the expected value of the sample mean estimate
E[L̂(f)] is equal to the true loss L(f), and its variance decreases as the number of samples
n increases. More precisely, in Chapter 5 we showed that for a fixed predictor f ∈ F ,

E[L̂(f)] = L(f) and Var[L̂(f)] = 1
n
Var[`(f(X1), Y1)]. (7.2)

This result can be understood as: if you first choose a predictor f ∈ F (shown in Fig. 7.1a),
and then gather your dataset D ∼ PD (shown in Fig. 7.1b),

(a) Picking a predictor f ∈ F first.

(b) Gathering a dataset D after picking a predictor f ∈ F .

Figure 7.1: Picking a predictor f independent of the dataset D.

then Eq. (7.2) holds (i.e. how well the predictor f fits the dataset D is representitive of
how it will fit new data). Formally, if f ∈ F is chosen idependently of the dataset D, then
Eq. (7.2) holds.

However, in our case the predictor f̂D depends on the random dataset D. We can think
about the learner as: first gathering the dataset D ∼ PD (shown in Fig. 7.2a), and then
choosing the predictor f̂D ∈ F that best fits the data (shown in Fig. 7.2b). If we then
gather new data sampled from the same distribution PX,Y (shown in Fig. 7.2c), then we see
that the predictor f̂D does not fit the new data very well, which is often called overfitting.
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(a) Gathering a dataset D first.

(b) Pick f̂D ∈ F after gathering a dataset D.

(c) Gathering new data according to PX,Y .

Figure 7.2: Picking a predictor f̂D that best fits the dataset D, and then gathering new data.

Since f̂D has overfit to the dataset we would find that L̂(f̂D) is smaller than L(f̂D). If
the original dataset we gathered was different, but we again chose the predictor f̂D that
best fits the data, we would probably again find that L̂(f̂D) is smaller than L(f̂D). Thus, in
expectation over datasets we would find that L̂(f̂D) ≤ L(f̂D) holds, giving us the following
inequality:

E[L̂(f̂D)] ≤ E[L(f̂D)].

Notice that this is exactly Property 1.
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You might have noticed that the predictor f̂D must have come from a large function
class F (say degree 10 polynomials F10) in order to fit the dataset so perfectly. Suppose
that instead the predictor was chosen from a smaller function class. We would find that the
predictor no longer fits the dataset as well as in the previous example (shown in Fig. 7.3a),
which means the estimated loss L̂(f̂D) would be larger. However, if we then gathered new
data, we would find that the predictor fits the new data better than in the previous example
(shown in Fig. 7.3b), and means the expected loss L(f̂D) would be smaller.

(a) Pick f̂D ∈ F after gathering a dataset D.

(b) Gathering new data according to PX,Y .

Figure 7.3: Picking a predictor f̂D that best fits the dataset D, and then gathering new data.

If we then take the expectation over datasets we would find that if the function class
gets smaller, then E[L(f̂D)] decreases, while E[L̂(f̂D)] increases. The opposite is of course
true if we make F larger, which gives us Property 2. To visualize this property we can fix
a dataset size (say n = 100) and consider the polynomial degree p function classes Fp and
let f̂D,p = argminf∈Fp L̂(f), then we can plot E[L̂(f̂D,p)] and E[L(f̂D,p)] as a function of the
polynomial degree p (shown in Fig. 7.4).
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Figure 7.4: E[L̂(f̂D,p)] and E[L(f̂D,p)] as a function of the polynomial degree p for a fixed
dataset size n = 100.

Finally, if we have a large dataset (i.e. large n), then we have many samples that
are likely to be representative of the true distribution PX,Y . This means that even if the
predictor f̂D is chosen to best fit the data D, it is likely to also fit new data well. Thus,
if n increases we would expect E[L̂(f̂D)] to get closer to E[L(f̂D)], which gives us Property
3. To visualize this property we can fix a function class (say degree 4 polynomials F4) and
plot E[L̂(f̂D,4)] and E[L(f̂D,4)] as a function of the dataset size n (shown in Fig. 7.5).

Figure 7.5: E[L̂(f̂D,4)] and E[L(f̂D,4)] as a function of the dataset size n for a fixed function
class F4.

The takeaway from this section is that if you want the estimated loss L̂ of the predictor
f̂D to be close to its expected loss, then you should choose a small function class F and have
a large dataset D. However, we will see in the next section that picking a small function
class F limits how small the expected loss L can be, even for the best predictor f ∈ F .
Thus, picking the right function class F to use for the ERM learner will become a balancing
act between these two objectives.
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7.2 Estimation, Approximation, and Irreducible Error
Our goal in this section will be to understand how to select the function class F for the
ERM learner such that E[L(f̂D)] is small. To do this we will decompose E[L(f̂D)] into three
terms: the estimation error, the approximation error, and the irreducible error, and study
how the function class affects each of these terms.

Before formally stating the decomposition of E[L(f̂D)], it will be helpful to first introduce
some special predictors that will be used in the decomposition. Let us take a step back
from the supervised learning setting we have been considering so far, and consider a simpler
setting. Suppose the learner knew the true feature-label distribution PX,Y , and thus could
compute the expected loss L(f) for any predictor f ∈ {f |f : X → Y}. Then, the best a
learner can do is output

fBayes = argmin
f∈{f |f :X→Y}

L(f).

This predictor is called the Bayes optimal predictor, hence the subscript in fBayes. This
predictor is the best possible predictor that can be output by any learner, since it is the
minimizer of the expected loss L(f), and was chosen from an unrestricted set of functions
{f |f : X → Y}. To help with understanding the following predictors, let us suppose that
fBayes is at least a degree 3 polynomial, as shown in Fig. 7.6.

Figure 7.6: fBayes.

Now, suppose the learner still knew the true feature-label distribution PX,Y , but had
to output a predictor from a restricted function class F . Then, the best a learner can do is
output the predictor that minimizes the expected loss L(f) over the function class F .

f∗ = argmin
f∈F

L(f).

If fBayes /∈ F , then f∗ is not the same as fBayes, and L(fBayes) < L(f∗). Continuing with
the previous example, suppose that we use the degree 1 polynomials F1 as our function
class, then fBayes is not in F1, and thus f∗ 6= fBayes, as shown in Fig. 7.7.
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Figure 7.7: f∗ ∈ F1 and fBayes.

Finally, suppose we are in the supervised learning setting (as defined in Chapter 4),
where the learner does not know the true feature-label distribution PX,Y , but instead has
access to a dataset D sampled from PD, and an estimated loss L̂ based on the dataset.
If the learner has to output a predictor from a restricted function class F , and wants to
minimize the estimated loss L̂, then the best predictor the learner can output is

f̂D = argmin
f∈F

L̂(f).

This is the same predictor as the one output by the ERM learner, and is the predictor we
have been studying so far. It holds that L(f∗) ≤ L(f̂D) for all datasets D since L(f∗) ≤ L(f)
for all f ∈ F and f̂D is an element of F . Taking the expectation over datasets we have that
E[L(f∗)] = L(f∗) ≤ E[L(f̂D)], where the first equality holds since L(f∗) is a constant. The
important thing to notice is that E[L(f̂D)] ≥ L(f∗) ≥ L(fBayes). To see how the predictors
might look we return to previous example. In Fig. 7.8 we have added f̂D, which is based
on a specfic dataset D of size n = 5 and the linear function class F1.

Figure 7.8: f̂ , f∗ ∈ F1 and fBayes.

Since fBayes is the best possible predictor a learner can output, we would like to un-
derstand how to make f̂D as close to fBayes as possible (in expectation over datasets), or
equivalently how to make E[L(f̂D)] as close to L(fBayes) as possible. Understanding how to
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do this naturally leads us to decomposing E[L(f̂D)] as follows:

E[L(f̂D)] = E[L(f̂D)]− L(f∗)︸ ︷︷ ︸
Estimation Error (EE)

+ L(f∗)− L(fBayes)︸ ︷︷ ︸
Approximation Error (AE)

+ L(fBayes)︸ ︷︷ ︸
Irreducible Error (IE)

.

The error terms can be understood as follows:
Irreducible Error (IE): The is the lowest possible expected loss that can be achieved
by any predictor, and is due to the inherent randomness in the feature-label distribution
PX,Y . That is, if for some feature vector x there is a non zero probability that the label is
y1 and a non zero probability the label is y2, then the predictor must suffer some loss for
this feature vector. The only way to reduce the irreducible error is gather more informative
features such that the randomness in the feature-label distribution is reduced. However,
that is usually no possible, hence the name irreducible error.
Approximation Error (AE): This is the difference between the expected loss of the best
predictor in the function class F and the expected loss of the best possible predictor. This
error should be thought of as the price the learner pays for restricting the predictor it
outputs to be an element of the function class F . This error decreases as the function class
F gets larger.
Estimation Error (EE): This is the difference between the expected loss of the predictor
output by the learner averaged over datasets and the expected loss of the best predictor in
the function class F . This error should be thought of as the price learner pays for using
the estimated loss L̂ to choose the predictor. To see how to reduce this error it is helpful
to decompose this error further:

E[L(f̂D)]− L(f∗) = E[L(f̂D)]− E[L̂(f̂D)] + E[L̂(f̂D)]− E[L̂(f∗)] + E[L̂(f∗)]− L(f∗)
= E[L(f̂D)]− E[L̂(f̂D)] + E[L̂(f̂D)− L̂(f∗)] + E[L̂(f∗)]− L(f∗)
≤ E[L(f̂D)]− E[L̂(f̂D)] + E[L̂(f∗)]− L(f∗). (7.3)

The inequality holds since f̂D is the minizer of L̂, so L̂(f̂D) ≤ L̂(f) for all f ∈ F , and thus
L̂(f̂D) ≤ L̂(f∗) since f∗ ∈ F . The reason this decomposition is useful is because the first
term E[L(f̂D)] − E[L̂(f̂D)] is something we have already discussed in detail in Section 7.1.
In particular we have seen that this term is non-negative, increases if the function class
F gets larger, and decreases as the number of samples n increases. For the second term,
since f∗ ∈ F is chosen independently of the dataset D, we have that E[L̂(f∗)] = L(f∗) and
that Var[L̂(f∗)] = 1

nVar[`(f∗(X1), Y1)] (also discussed in Section 7.1). Roughly speaking,
since the variance of L̂(f∗) decreases as n increases it implies that the second term also
decreases as n increases. Thus, the estimation error decreases if n increases, but increases
if the function class F gets larger.

The important thing to notice is that there is a trade-off between the approximation
error and the estimation error in terms of how to select the function class F . In par-
ticular if you make the function class F larger, then the approximation error decreases,
but the estimation error increases. While, if you make the function class F smaller, then
the approximation error increases, but the estimation error decreases. We can visualize
this trade-off by plotting L(fBayes), L(f∗),E[L(f̂D,p)], and E[L̂(f̂D,p)] as a function of the
polynomial degree p for a fixed n (shown in Fig. 7.9), where f̂D,p = argminf∈Fp L̂(f).
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Figure 7.9: L(fBayes), L(f∗),E[L(f̂D)], and E[L̂(f̂D)] as a function of the polynomial degree
p for a fixed n.

We can see that L(fBayes) is the smallest, and does not change with p, while L(f∗)
approaches L(fBayes) as p increases. We can also see that when the function class is small
(p is small) the approximation error (difference between L(fBayes) and L(f∗)) is large, but
the estimation error (difference between E[L(f̂D,p)] and E[L̂(f̂D,p)]) is small. When this is
the case, the predictor f̂D,p is said to be underfitting the data. On the other hand, when
the function class is large (p is large) the approximation error is small, but the estimation
error is large. When this is the case, the predictor f̂D,p is said to be overfitting the data.
Also, notice how E[L(f̂D,p)]−E[L̂(f̂D,p)] has the same behaviour as the estimation error, as
expected, due to the expression we derived in Eq. (7.3). The best choice of function class to
use for a learner would be the one that minimizes E[L(f̂D,p)], over polynomial degree p. In
the plot this would correspond to the function class F4, resulting in a learner that outputs
f̂D,4 = argminf∈F4 L̂(f). The same plot, but annotated with the observations made in this
paragraph is shown in Fig. 7.10.
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Figure 7.10: Annotated version of L(fBayes), L(f∗),E[L(f̂D)], and E[L̂(f̂D)] as a function
of the polynomial degree p for a fixed n.

A final observation to make from the decomposition of E[L(f̂D)] is that increasing the
number of samples n in the dataset D will decrease the estimation error, with no affect
on the other error terms, and is thus always benefecial to do if possible. This is shown in
Fig. 7.11 where we again plot L(fBayes), L(f∗),E[L(f̂D,p)], and E[L̂(f̂D,p)] as a function of
the dataset size n for a fixed p.

Figure 7.11: L(fBayes), L(f∗),E[L(f̂D)], and E[L̂(f̂D)] as a function of the dataset size n
for a fixed p.

We again see that indeed, the behaviour of E[L(f̂D,p)] − E[L̂(f̂D,p)] is the same as the
estimation error.
Exercise 7.1: Suppose that you have a small dataset, but a large function class. Would
the estimation error be large or small? Would you expect the approximation error to be
large or small? Would expect the predictor f̂D to be underfitting or overfitting the data or

102



neither? �

Exercise 7.2: Suppose that you have a large dataset, but a small function class, and
fBayes is much more complex than any function in the function class. Would the estimation
error be large or small? Would you expect the approximation error to be large or small?
Would expect the predictor f̂D to be underfitting or overfitting the data or neither? �

Exercise 7.3: Suppose that you have a large dataset, but a small function class F ,
and fBayes ∈ F . Would the estimation error be large or small? Would you expect the
approximation error to be large or small? Would expect the predictor f̂D to be underfitting
or overfitting the data or neither? �

7.3 Selecting a Function Class
The careful reader might have noticed that it is not possible to do the procedure we described
in the previous section for selecting a function class to use for the ERM learner. In particular,
we said that the best choice of function class to use for a learner would be the one that
minimizes E[L(f̂D,p)], over polynomial degree p. However, we do not have access to the
true feature-label distribution PX,Y , and thus cannot compute the expected loss L(f̂D,p).
We also only have access to a single dataset D and cannot compute an expectation over
datasets. Is our previous discussion of no use then? It turns out that estimation comes to
save the day! If we had a good estimate of the expected loss L(f̂D,p) then we could just
use that instead. Unfortunately, as we have seen in Section 7.1, the estimated loss L̂(f̂D,p)
is not very good, especially for large function classes, since the predictor f̂D,p was chosen
based on the dataset D. One option would then be to gather a new dataset Dtest, and
use that to estimate the expected loss L(f̂D,p). The reason this is a good idea is because
the predictor f̂D,p is chosen independently of Dtest, thus an estimate of the expected loss
L(f̂D,p) based on Dtest will be good (as discussed in Section 7.1).

The final issue to address, is that in the supervised learning setting we only have access
to one dataset D, and cannot gather a new dataset Dtest. The way to resolve this issue is
to split the dataset D into two parts: a training and test set:

Dtrain = ((X1, Y1), . . . , (Xn−m, Yn−m)) and Dtest = ((Xn−m+1, Yn−m+1), . . . , (Xn, Yn)).

The learner should only use the training set Dtrain to choose the predictor f̂Dtrain,p. In
particular, the ERM learner should now use

L̂train(f) = 1
n−m

n−m∑
i=1

`(f(Xi), Yi)

as its loss estimate. This way the test set Dtest can be used to estimate the expected loss
L(f̂Dtrain,p), since the predictor f̂Dtrain,p was chosen independently of Dtest. We will denote
the estimated loss of a predictor f ∈ F based on the test set Dtest as

L̂test(f) = 1
m

n∑
i=n−m+1

`(f(Xi), Yi).
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We can then plot L̂train(f̂Dtrain,p) and L̂test(f̂Dtrain,p) as a function of the polynomial degree
p for a specific dataset D (shown in Fig. 7.12).

Figure 7.12: L̂train(f̂Dtrain,p) and L̂test(f̂Dtrain,p) as a function of the polynomial degree p for
a specific dataset D.

In this plot, and for most instances of the dataset D we expect to see a similar behaviour
as we saw for E[L(f̂D,p)] and E[L̂(f̂D,p)] in Fig. 7.9.

What is important, is that we actually have access to L̂test(f̂Dtrain,p) and can use that to
select the function class Fp. Putting things together, the procedure for selecting a predictor
is as follows:

1. Split the fixed dataset D into a training set Dtrain and a test set Dtest.

2. For each polynomial degree p ∈ {1, . . . , pmax}, get the predictor f̂Dtrain,p output by
the ERM learner A(Dtrain) that uses the function class Fp. The value of pmax should
be chosen based on the complexity of the problem, and the computational resources
available.

3. Calculate the estimated loss L̂test(f̂Dtrain,p) for each p ∈ {1, . . . , pmax}.

4. Select the predictor f̂Dtrain,p that minimizes L̂test(f̂Dtrain,p) over values of p ∈ {1, . . . , pmax}.

7.4 Bias and Variance Tradeoff
The procedure described in the previous section can work well; however, the choice of
function class Fp had do be done in discrete steps of polynomial degree p. Consider the
case where the best function class is something between F4 and F5, that contains some
some degree 5 polynomial features, but not all. We do not have such fine grained control
with the parameter p. In the next section we will see that a technique called regularization
can be thought of as a way to get this fine grained control. But in order to understand the
effects of regularization, it we will be useful to first introduce the bias and variance tradeoff.
In Section 7.2 we saw one way to decompose the E[L(f̂D)] into three terms: the estimation
error, the approximation error, and the irreducible error. In this section we will see another
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way to decompose E[L(f̂D)] into three terms: the variance, the bias, and the irreducible
error.

For the decomposition to work it is necessary to assume that the loss function ` is
the squared loss. Then, after some slightly technical steps it is possible to show that the
following holds:

E[L(f̂D)] = E
[
E[(f̂D(X)− f̄(X))2|X]︸ ︷︷ ︸

Variance

]
+ E

[
(f̄(X)− fBayes(X)︸ ︷︷ ︸

Bias

)2
]

+ L(fBayes)︸ ︷︷ ︸
Irreducible Error

= E
[
Var[f̂D(X)|X]

]
+ E

[
Bias[f̄(X)]2

]
+ L(fBayes).

The function f̄(X) is called the expected predictor and is defined as f̄(X) = E[f̂D(X)|X].
You should think of f̄ as the predictor you would get if you averaged over all possible datasets
D, hence the expected predictor. The irreducible error term is the same as before, but the
bias and variance terms are new. The variance describes the average squared deviation of
the predictor f̂D from the expected predictor f̄ . While the bias describes how different the
expected predictor f̄ is from the best possible predictor fBayes.

A nice property to know is that if the predictor f̂D = argminf∈F L̂(f) (and some other
minor conditions), then the expected predictor f̄ = f∗ = argminf∈F E[L(f)]. If f̄ = f∗,
then it can be shown that the variance term is equal to the estimation error and the bias
term is equal to the approximation error. More precisely, if f̄ = f∗, then the following
holds:

E
[
Var[f̂D(X)|X]

]
= E[L(f̂D)]− L(f∗) and E

[
Bias[f̄(X)]2

]
= L(f∗)− L(fBayes).

Thus, under the condition that f̄ = f∗ the effect of changing the function class F or the
number of samples n has the same effect on the variance and bias terms as it does on the
estimation and approximation error terms. In particular, the following properties holds:
Bias: Decreases as the function class F gets larger.
Variance: Increases as the function class F gets larger, and decreases as the number of
samples n increases.

It turns out that the above properties hold in general, even if f̄ 6= f∗. The term
underfitting is then used to describe the case where the bias is large, but the variance is
small. While, the term overfitting is used to describe the case where the bias is small, but
the variance is large.

7.5 Regularization

Suppose that fp(x) = φp(x)>w is a polynomial of degree p and w = (w0, w1, . . . , wp̄−1) ∈ Rp̄
is the weight vector. One motivation behind introducing regularization is based on the
observation that if the values of the weights wi are large, then the predictor fp will be
more complex [?]. Roughly speaking the complexity of a predictor can be thought of as the
degree of the lowest degree polynomial that can be used to approximate the predictor well.
For instance, in Fig. 7.13 the predictor g is less complex since it can be well approximated
by a line (a degree 1 polynomial), while the predictor f is more complex since it cannot be
well approximated by a line, and likely needs at least a degree 4 polynomial.
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Figure 7.13: A complex and a simple predictor.

Since we can think of the value of the weights as a measure of the complexity of the
predictor, we can introduce a new term that penalizes the weights for being large in the
estimated loss that the ERM learner is trying to minimize. In particular, the regularized
estimated loss for a predictor fp ∈ Fp becomes:

L̂λ(fp) = 1
n

n∑
i=1

`(fp(xi), yi) + λ

n

p̄−1∑
j=1

w2
j ,

The term λ
n

∑p̄−1
j=1 w

2
j is called the regularizer, and the parameter λ is called the regularization

parameter. Notice that regularization is only applied to the weights wj for j ∈ {1, . . . , p̄−1}
and not to the bias w0. This is because the bias does not affect the slope or curvature of
the predictor, and thus does not affect the complexity of the predictor. Minimizing this
new estimated loss is sometimes called ridge regression.

If λ = 0 then regularized estimated loss is the same as the unregularized one L̂0 = L̂.
But if λ > 0 then the regularized estimated loss will penalize the weights being large. In
this way the parameter λ gives us a smooth way to scale the complexity of the predictor.
The function class F should be selected to be quite large (for instance F10), so that small
values of λ will result in a complex predictor, and large values of λ will result in a simple
predictor. Notice how the function class F does not change here, thus the approximation
error is the same for all values of λ. Since large λ will result in a simple predictor, the
expected predictor f̄ will also be simple. In general, if λ 6= 0, then f̄ 6= f∗, and the bias
will not be equal to the approximation error. Similarly, the variance will not be equal to
the estimation error, when λ 6= 0. The behaviour of the bias and variance as a function of
λ is as follows. If λ is large then the predictors f̂D and f̄ will both be simple, and since two
simple predictors are likely to be similar, the variance will be small. However, since f̄ is
simple, it will likely be far from the best possible predictor fBayes, and thus the bias will be
large. On the other hand if λ is small then the predictors f̂D and f̄ will both be complex,
and since two complex predictors can be very different from each other, the variance will
be large. However, since f̄ is complex it will likely be close to the best possible predictor
fBayes, and thus the bias will be small. We can see that the decreasing λ has the same effect
on the bias and variance terms as increasing the function class F ; however, for slightly
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different reasons. Thus, the regularization parameter λ can be used to control the bias and
variance of the predictor, and is a way to get a fine grained control over the complexity of
the predictor.

We can follow a similar procedure as described in Section 7.3, but now use the regularized
estimated loss L̂train,λ (based on the train set) instead of L̂train. Let f̂Dtrain,λ be the predictor
output by the learner that uses the regularized estimated loss L̂train,λ. Since our goal is to
minimize the expected loss L(f̂Dtrain,λ), we should select the predictor f̂Dtrain,λ that minimizes
the estimated loss based on the test set without regularization L̂test. We can plot this in
the same way as before, but now as a function of the regularization parameter λ (shown in
Fig. 7.14).

Figure 7.14: L̂train,λ(f̂Dtrain,λ) and L̂test(f̂Dtrain,λ) as a function of the regularization param-
eter λ for a specific dataset D.

For the case shown in the plot we would select the predictor f̂Dtrain,0.1, since L̂test(f̂Dtrain,0.1)
is the smallest.

What is left to show is how to minimize the regularized estimated loss L̂λ. To keep
the notation simpler we minimize L̂λ, which uses the whole dataset D, instead of just the
training set Dtrain, but can easily be applied to L̂train,λ by simply changing n to n −m in
the formulas.

It is possible to derive a closed form solution for the weights that minimize L̂λ; however,
we will use batch gradient descent in this section. As we have done in Section 6.5.1, we will
derive the gradient for the case when the function class is the set of all linear functions F1.
Then the same exact result holds for the case when the function class is the set of all degree
p polynomials Fp, by simply replacing x with φp(x). Assume that the loss function is the
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squared loss, and let

L̂λ(w) = 1
n

n∑
i=1

(x>i w− yi)2 + λ

n

d∑
j=1

w2
j

be the regularized estimated loss as a function of the weight vector w. Recall that the batch
gradient descent update rule is given by:

w(t+1) = w(t) − η(t)∇L̂λ(w(t)),

Thus, we just need to compute the gradient of the regularized estimated loss

∇L̂λ(w) =
(
∂L̂λ
∂w0

(w), ∂L̂λ
∂w1

(w), . . . , ∂L̂λ
∂wd

(w)
)>

.

Let L̂(w) = 1
n

∑n
i=1(x>i w − yi)2, and g(w) = λ

n

∑d
j=1w

2
j . Then, we have that L̂λ(w) =

L̂(w) + g(w). Then, for any k ∈ {0, 1, . . . , d} we have that:

∂L̂λ
∂wk

(w) = ∂L̂

∂wk
(w) + ∂g

∂wk
(w).

But, we have already calculated ∂L̂
∂wk

(w) in Section 6.5.1, and it is given by:

∂L̂

∂wk
(w) = 2

n

n∑
i=1

(x>i w− yi)xik.

To calculate ∂g
∂wk

(w), notice that g does not depend on w0, thus ∂g
∂w0

(w) = 0. For the case
when k ∈ {1, . . . , d} we have that:

∂g

∂wk
(w) = λ

n

∂

∂wk

d∑
j=1

w2
j = λ

n

d∑
j=1

∂

∂wk
w2
j = 2λ

n
wk.

Putting things together we have that:

∂L̂λ
∂wk

(w) =
{ 2
n

∑n
i=1(x>i w− yi)xik if k = 0,

2
n

∑n
i=1(x>i w− yi)xik + 2λ

n wk if k ∈ {1, . . . , d}.

Plugging this into gradient we get:

∇L̂λ(w) =
(

2
n

n∑
i=1

(x>i w− yi)xi0,
2
n

n∑
i=1

(x>i w− yi)xi1 + 2λ
n
w1, . . . ,

2
n

n∑
i=1

(x>i w− yi)xid + 2λ
n
wd

)>

= 2
n

n∑
i=1

(x>i w− yi)(xi0, . . . , xid)> +
(

0, 2λ
n
w1, . . . ,

2λ
n
wd

)>
= 2
n

n∑
i=1

(x>i w− yi)xi +
(

0, 2λ
n
w1, . . . ,

2λ
n
wd

)>
.

The batch gradient descent update rule is then obtained by plugging the above gradient
into the update rule.
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7.6 Summary of the Different Errors

In this chapter we learned two common ways to decompose E[L(f̂D)]. The first way was
into the estimation error, approximation error, and irreducible error:

E[L(f̂D)] = E[L(f̂D)]− L(f∗)︸ ︷︷ ︸
Estimation Error (EE)

+ L(f∗)− L(fBayes)︸ ︷︷ ︸
Approximation Error (AE)

+ L(fBayes)︸ ︷︷ ︸
Irreducible Error

.

The second way was into the variance, bias, and irreducible error:

E[L(f̂D)] = E
[
E[(f̂D(X)− f̄(X))2|X]︸ ︷︷ ︸

Variance

]
+ E

[
(f̄(X)− fBayes(X)︸ ︷︷ ︸

Bias

)2
]

+ L(fBayes)︸ ︷︷ ︸
Irreducible Error

.

We learned that the only way to reduce the irreducible error is gather more informative
features, which is often not possible.

We also studied how changing the size of the dataset n, the complexity of the polynomial
function class p, and the regularization parameter λ affects the AE, EE, variance, and bias.
In Table 7.1 we provide a summary of how changing n, p, and λ affects the different errors.

Increasing n Increasing p with λ = 0 Decreasing λ with p = 10
EE Decreases Increases Unclear
AE Unchanged Decreases until fBayes ∈ Fp Unchanged

Variance Decreases Increases Increases
Bias Unchanged Decreases until fBayes ∈ Fp Decreases

Table 7.1: How changing n, p, and λ affects the EE, AE, variance, and bias. The terms
"Increasing" and "Decreasing" also encompass cases where values remain constant.

Some important takeaways from this table are:
• Increasing the size of the dataset n is always beneficial, since it decreases the EE and

variance without affecting the AE and bias.

• If no regularization is used λ = 0, then EE and variance will increase, while the AE
and bias will decrease as the complexity of the function class p increases.

• If the function class Fp contains fBayes then the AE is zero.

• Changing the regularization parameter λ has no effect on the AE since the function
class Fp does not change.

• Decreasing λ has a complicated effect on the EE, since the predictor f̂D will become
more complex which means it can more closely approximate f∗, however, due to
this complexity it will vary more from dataset to dataset. As such, the behaviour is
complicated and we will not study it in these notes.

As a final remark, we will often claim that two functions get closer to each other as
the error between the two of them gets smaller. For instance we might claim that the
predictor f∗ gets closer to fBayes if the AE decreases. Although the AE only compares
the two functions through the expected loss L, it is often a good indicator that the two
functions are close (i.e. f∗(x) ≈ fBayes(x) for all x ∈ X ).
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Chapter 8

Maximium Likelihood and Maximium A Posteriori
Estimation

So far we have only studied the ERM learner. In this chapter we study two new learners.
The first is based on maximum likelihood estimation (MLE) and the second is based on
maximum a posteriori estimation (MAP). We begin with MLE.

8.1 Maximum Likelihood Estimation (MLE)
Roughly speaking, our goal in supervised learning is to predict the label y correctly based
on a new input feature vector x. In Chapter 4 we argued that a predictor f that minimizes
the expected loss L(f) is a good choice. Since we do not know the true distibution over
feature-label pairs PX,Y , we cannot compute the expected loss directly. ERM addressed
this issue by estimating the expected loss L using the estimated loss L̂.

Next, we present at different learner that does not estimate the expected loss L. Instead,
recall that in Chapter 7 we defined the best possible predictor as

fBayes = argmin
f∈{f |f :X→Y}

L(f).

We said this was the best possible predictor because it minimizes the expected loss L(f)
over the set of all possible predictors. If we assume we are in the regression setting and
using the squared loss, then it is possible to show that the following holds:

fBayes(x) = E[Y |X = x] =
ˆ
Y
y · pY |X(y|x) dy ,

where the last equality is simply the definition of the conditional expectation. This means
that the best possible predictor is the conditional expectation of the label given the feature
vector. We can also see that in order to calculate fBayes we need to know the conditional
pdf pY |X . Thus, if a learner could estimate the conditional pdf pY |X , then the learner could
plug it into the above equation and obtain an estimate of fBayes. This will be the idea
behind the MLE learner.

Before discussing how to estimate the conditional pdf pY |X , we will first need to go over
some MLE basics.

8.1.1 MLE Basics

Assume that their is a random dataset of n samples:

D = (Z1, . . . Zn) ∈ Zn,
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with distribution PD and pmf or pdf pD. Each random sample Zi is i.i.d. with distribution
PZ and pmf or pdf pZ . If we are only given access to a fixed dataset D = (z1, . . . , zn), then
MLE is a method to estimate pZ . To see how this is done, notice that since the samples
are i.i.d., we can write the following:

pD(D) = pD(z1, . . . , zn) = pZ(z1) · · · pZ(zn) =
n∏
i=1

pZ(zi),

where the second equality is due to the i.i.d. assumption. The last equality uses the product
symbol ∏ which is defined as ∏n

i=1 ai = a1 · · · an. Notice how pD(D) only depends on pZ .
We can think of pD(D) as representing how likely we are to get the dataset D. MLE
estimates pZ by finding a pdf or pmf, pMLE, that maximizes pD(D). That is, it chooses
the pmf or pdf that maximizes the likelihood of the dataset D, hence the name maximum
likelihood estimation. Formally,

pMLE = argmax
p∈H

n∏
i=1

p(zi),

where H is the set of pdfs or pmfs that we are considering. Usually, MLE is considered
for distributions parametrized by some parameter(s), for example: Bernoulli distribution,
Gaussian distribution, etc.
Example 8.1: [MLE for Bernoulli.] Let Z1, . . . , Zn be i.i.d. random variables representing
n flips of the same unfair coin. The distribution of each Zi is given by Bernoulli(α∗), and
the pmf is pZ(z) = (α∗)z · (1−α∗)(1−z). However, α∗ is unknown, and thus pZ is unknown.
We would like to estimate pZ using MLE. To do this, we must select the set of functions H
that we are considering. For this example it is natural to consider the set of all Bernoulli
distributions:

H = {pα | pα : {0, 1} → [0, 1] and pα(z) = αz · (1− α)(1−z) for some α ∈ [0, 1]}.

Notice that any pα ∈ H can uniquely be identified by the parameter α, and has the form
pα(z) = αz · (1− α)(1−z). Thus we can rewrite the MLE solution as follows:

pMLE = pαMLE where αMLE = argmax
α∈[0,1]

n∏
i=1

pα(zi).

The function pα(zi) is often written as p(zi|α) to emphasize that it depends on the parameter
α; however, it is important to note this is not a conditional distribution, since α is not a
random variable. Then, the term ∏n

i=1 p(zi|α) is called the likelihood of the dataset D given
the parameter α, and is often written as p(D|α). For a fixed dataset D, the likelihood is
seen as a function of the parameter(s), which is α in this case.

At this point we simply need to solve an optimization problem to find αMLE. We have
discussed optimization in detail in Chapter 6, and the techniques we learned there can be
applied here.

To end this example we give a visual representation of what MLE is doing. Suppose
that you had n = 5 flips of the coin with dataset D = (1, 0, 1, 0, 0). This is shown as the
red Xs in Fig. 8.1.
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Figure 8.1: MLE for a unfair coin.

The MLE solution selects the pmf that maximizes the likelihood of seeing the 5 flips.
Since there are 3 tails(0), but only 2 heads(1) in the dataset, the MLE solution will end
up selecting a pmf that gives a higher probability to tails than heads as shown by the two
black points in the plot. �

Exercise 8.1: Solve for αMLE in Example 8.1. �

Example 8.2: [MLE for Gaussian.] Assume that the data Z1, . . . , Zn (e.g. height of a
person) is i.i.d. with distribution N (µ∗, 1) and pdf

pZ(z) = 1√
2π

exp
(
−(z − µ∗)2

2

)
.

Given the dataset D = (z1, . . . , zn), we would like to estimate µ∗ using MLE, which will
give us an estimate of the true mean µ∗ so that pµMLE(z) ≈ pZ . The MLE for µ∗ can be
seen as sweeping through all possible values of µ and selecting the one that maximizes the
likelihood of the dataset D. Now we procede to find the MLE solution, where we will take
the log of the likelihood to simplify the optimization problem.

µMLE = argmax
µ∈R

n∏
i=1

p(zi|µ)

= argmax
µ∈R

log
(

n∏
i=1

p(zi|µ)
)

(since log is monotonic)

= argmax
µ∈R

n∑
i=1

log(p(zi|µ)) (since log(ab) = log(a) + log(b))

= argmin
µ∈R

−
n∑
i=1

log(p(zi|µ)) (changing max to min)

= argmin
µ∈R

n∑
i=1

(zi − µ)2

2 (since log 1√
2π does not depent on µ)

In the third equality we switched from maximizing to minimizing simply due to convention in
optimization. The term −∑n

i=1 log(p(zi|µ)) is called the negative log-likelihood, and is often
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written as − log(p(D|µ)). For most MLE problems, you will find that it is helpful to take
the log of the likelihood to simplify the optimization problem. To solve the minimization
problem we can take the derivative of the last expression with respect to µ and set it to
zero.

d

dµ

n∑
i=1

(zi − µ)2

2 = 0 ⇒
n∑
i=1

(zi − µ) = 0 ⇒
n∑
i=1

zi = nµ ⇒ µMLE = 1
n

n∑
i=1

zi.

�

Exercise 8.2: Suppose that now the data Z1, . . . , Zn is i.i.d. with distributionN (0, (σ∗)2).
Find the MLE solution for σ∗. �

Exercise 8.3: Suppose that the data Z1, . . . , Zn is i.i.d. with a Poisson with parameter
λ∗ ∈ [0,∞). Although we did not learn about the Poisson distribution, all you will need to
know about it for this exercise is that a Poisson random variables takes values 0, 1, 2, . . .
and its the pmf is

pZ(z) = (λ∗)z
z! exp(−λ∗).

Find the MLE solution for λ∗. �

8.1.2 MLE Learner

Now we come back to the question of estimating fBayes for which we need to estimate the con-
ditional pdf pY |X . The regression setting considers a random datasetD = (X1, Y1), . . . , (Xn, Yn),
where (Xi, Yi) are i.i.d. samples from PX,Y with density pX,Y , our goal is to estimate the
conditional density pY |X using MLE. Recall from the previous section that to be able to use
MLE, we need to assume that the data comes from a specific family of distributions over
which we can optimize. Note that we do not have this assumption for the ERM learner.
For MLE in the linear regression setting, we assume that

Yi|Xi = xi ∼ N (x>i w, 1) ,
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where we want to find the parameter w using MLE. We start by optimizing over the joint
density and relate it to the conditional density:

wMLE = argmax
w∈Rd+1

n∏
i=1

p(xi, yi|w)

= argmax
w∈Rd+1

n∏
i=1

p(yi|xi,w) · p(xi) (product rule)

= argmax
w∈Rd+1

n∏
i=1

p(yi|xi,w) (since p(xi) does not depend on w)

= argmax
w∈Rd+1

n∑
i=1

log(p(yi|xi,w)) (since log is monotonic)

= argmin
w∈Rd+1

−
n∑
i=1

log(p(yi|xi,w))

= argmin
w∈Rd+1

n∑
i=1

(yi − x>i w)2

2 (since log 1√
2π does not depend on w)

= argmin
w∈Rd+1

n

2 L̂(w) (by the defn of L̂)

= argmin
w∈Rd+1

L̂(w) .

The last line shows that the MLE solution wMLE is the same as the closed form ERM
solution ŵ in the regression setting with the squared loss (see Section 6.3). Finally, we can
plug in wMLE into the conditional pdf pY |X to get an estimate of fBayes:

fBayes(x) = E[Y |X = x]

=
ˆ
R
y · pY |X(y|x) dy

≈
ˆ
R
y · pY |X(y|x,wMLE) dy

= E[Y ′|X = x] (where Y ′|X = x ∼ N (x>wMLE, 1))
= x>wMLE

= x>ŵ
= f̂ .

This shows that the MLE learner is the same as the ERM learner in the regression setting
with the squared loss. However, note that here we assumed that the data comes from a
Gaussian distribution, which was not the case for the ERM learner.

8.2 Maximum A Posteriori Estimation (MAP)
In MLE, a key step to make it possible to estimate a pdf or pmf is to assume that the data
comes from a specific distribution, which means the pdf or pmf can be written in terms of
some parameter(s). The reason this was important was that we can then optimize over the
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parameter(s) to find the best pdf or pmf that makes the data the most likely. Maximum
A Posteriori Estimation (MAP) is a different approach to estimating the parameter(s) of
a pdf or pmf. In MAP, we assume that the parameter(s) of the pdf or pmf are random
variables themselves. We estimate the parameters by finding the most likely values of the
parameters given the data. More precisely, the MAP solution is

wMAP = argmax
w∈W

p(w|D).

The term p(w|D) is called the posterior of w given the data D. To help build some intuition
and optimize the posterior it is helpful to expand p(w|D):

wMAP = argmax
w∈W

p(w|D)

= argmax
w∈W

p(D|w) · p(w)
p(D) (Bayes’ rule)

= argmax
w∈W

p(D|w) · p(w). (since p(D) does not depend on w)

The final expression shows that the MAP solution is the same as the MLE solution, but
with an additional term p(w). The term p(w) is called the prior of w. The prior is a
distribution over the parameter(s) that encodes our beliefs about the parameter(s) before
seeing the data.

Before we use MAP to estimate the parameter(s) of pY |X , we will first go over some
basics MAP basics.

8.2.1 MAP Basics

Example 8.3: [MAP for Gaussian] Suppose that the data Z1, . . . , Zn is i.i.d. with distri-
bution N (µ∗, 1) and represents the height of a person. We would like to estimate µ∗ using
MAP. Suppose we have some prior knowledge that the mean height of a person is around
160 cm. We can then choose a gaussian prior with mean 160 and some variance σ2 (which
is also based on our prior knowledge and we will set later). This means that

p(µ) = 1√
2πσ2

exp
(
−(µ− 160)2

2σ2

)
.

Then the MAP solution is

µMAP = argmax
µ∈R

p(D|µ) · p(µ)

= argmin
µ∈R

− log(p(D|µ)p(µ))

= argmin
µ∈R

[− log(p(D|µ))− log(p(µ))]

= argmin
µ∈R

[
n∑
i=1

(zi − µ)2

2 − log(p(µ))
]
.
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The last equality used the results from Example 8.2. If we just focus on the term log(p(µ))
and plug in the definition of p(µ), we get

log(p(µ)) = log
(

1√
2πσ2

exp
(
−(µ− 160)2

2σ2

))

= log
( 1√

2πσ2

)
− (µ− 160)2

2σ2 .

Plugging this back into the MAP solution, we get

µMAP = argmin
µ∈R

[
n∑
i=1

(zi − µ)2

2 − log(p(µ))
]

= argmin
µ∈R

[
n∑
i=1

(zi − µ)2

2 − log
( 1√

2πσ2

)
+ (µ− 160)2

2σ2

]

= argmin
µ∈R

[
n∑
i=1

(zi − µ)2

2 + (µ− 160)2

2σ2

]
.

The last equality holds since the term log
(

1√
2πσ2

)
does not depend on µ. To solve the

optimization problem we can take the derivative of the last expression with respect to µ
and set it to zero.

d

dµ

[
n∑
i=1

(zi − µ)2

2 + (µ− 160)2

2σ2

]
= 0

=⇒ −
n∑
i=1

(zi − µ) + (µ− 160)
σ2 = 0

=⇒ nµ−
n∑
i=1

zi + µ

σ2 −
160
σ2 = 0

=⇒ µMAP =
∑n
i=1 zi + 160

σ2

n+ 1
σ2

.

It is insightful to study µMAP for different cases of σ2 and n. In particular, we make the
following observations:

1. If n is large, then µMAP will be approximately 1
n

∑n
i=1 zi, which is µMLE (from Ex-

ample 8.2). This can be thought of as the prior having less influence on the MAP
solution as the amount of data increases.

2. If σ2 is small, then µMAP will be approximately 160. A small σ2 means that we are
confident in our prior knowledge, and thus the MAP solution will be close to the prior
mean.

3. If σ2 is large then µMAP will again be approximately µMLE. A large σ2 means that
we are not confident in our prior knowledge, and thus the MAP solution will be close
to the MLE solution.
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In the extreme case, if the prior is the pdf of the uniform distribution, then the MAP
solution will be the same as the MLE solution, since the prior has no influence. �

Exercise 8.4: Suppose that the data Z1, . . . , Zn is i.i.d. with a Poisson with parameter
λ∗ ∈ [0,∞). Its pmf is

pZ(z) = (λ∗)z
z! exp(−λ∗).

Suppose that we have some prior knowledge that the parameter λ∗ follows a gamma dis-
tribution with parameters k = 3 and θ = 1. A gamma random variable has a continuous
distribution and it takes values in (0,∞)1. Again, we will not go into the details of the
gamma distribution, but the pdf is

p(λ) = λk−1

(k − 1)!θk exp
(
−λ
θ

)
= λ2

2 exp(−λ).

Find the MAP solution for λ∗. �

8.2.2 MAP Learner

Now we come back to the question of estimating fBayes for which we need to estimate the
conditional pdf pY |X . Similar to MLE, we assume that the data comes from a Gaussian
distribution with mean x>w∗ and variance 1. But, now we will use MAP to estimate the
parameters w∗ = (w∗0, w∗1, . . . , w∗d) ∈ Rd+1 of the distribution. To use MAP we also need
to assume a prior distribution over the parameters. One common choice is to assume that
all the parameters (except the bias term) w∗1, . . . , w∗d are i.i.d. with a Gaussian distribution
with mean 0 and variance 1/λ. This means that

p(wj) = 1√
2π/λ

exp
(
−
w2
j

2/λ

)
.

for all j ∈ {1, . . . , d}. This means that our prior belief is that the parameters are likely to
be close to 0, which as we have seen in Section 7.5 implies the function x>w∗ is simple. The
variable λ then allows us to control how much we believe in this prior. If λ is large, then
we believe in the prior a lot, and if λ is small, then we do not believe in the prior much.
Since the bias term w∗0 does not affect the complexity of the function x>w∗, we often do
not consider having prior knowledge about it. One way to encode this is to assume that w∗0
is uniformly distributed on the interval [−a, a] for a large a. This means that

p(w0) = 1
2a.

It is also assumed that w0 is independent of the other parameters w1, . . . , wd, so that the
following math is simplified.

1Gamma distributin: https://en.wikipedia.org/wiki/Gamma_distribution
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Now we can calculate the MAP solution:

wMAP = argmax
w∈Rd+1

p(D|w) · p(w)

= argmin
w∈Rd+1

− log(p(D|w) · p(w))

= argmin
w∈Rd+1

[− log(p(D|w))− log(p(w))]

= argmin
w∈Rd+1

[
n∑
i=1

(yi − x>i w)2

2 − log(p(w))
]
.

We can then expand and simplify the term log(p(w)) as follows:

log(p(w)) = log(p(w0, w1, . . . , wd))
= log(p(w0) · p(w1) · · · p(wd)) (independence assumption)
= log(p(w0)) + log(p(w1)) + · · ·+ log(p(wd))

= log(p(w0)) +
d∑
j=1

log(p(wj))

= log(p(w0)) +
d∑
j=1

log
(

1√
2π/λ

exp
(
−
w2
j

2/λ

))

= log(p(w0)) +
d∑
j=1

[
log

(
1√

2π/λ

)
−
λw2

j

2

]

= log(p(w0)) + d log
(

1√
2π/λ

)
−

d∑
j=1

λw2
j

2 .

We can then plug this back into the MAP solution to get

wMAP = argmin
w∈Rd+1

 n∑
i=1

(yi − x>i w)2

2 − log(p(w0))− d log
(

1√
2π/λ

)
+

d∑
j=1

λw2
j

2


= argmin

w∈Rd+1

 n∑
i=1

(yi − x>i w)2

2 +
d∑
j=1

λw2
j

2

 .
The last equality holds since the term − log(p(w0))−d log

(
1√

2π/λ

)
does not depend on w.

Finally, recall the definition of the regularized estimated loss

L̂reg(w) = 1
n

n∑
i=1

(
yi − x>i w

)2
+ λ

2 ‖w‖
2
2.

Notice how this is almost the same function we are trying to minimize in the MAP solution.
In particular, it holds that:

wMAP = argmin
w∈Rd+1

[
n

2 L̂reg(w)
]

= argmin
w∈Rd+1

L̂reg(w).
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Thus the MAP parameters wMAP is the same as the regularized ERM parameters. If then
want an estimate of fBayes we can plug in wMAP into the conditional pdf pY |X to get:

fBayes(x) = E[Y |X = x]

=
ˆ
R
y · pY |X(y|x) dy

≈
ˆ
R
y · pY |X(y|x,wMAP) dy

= E[Y ′|X = x] (where Y ′|X = x ∼ N (x>wMAP, 1))
= x>wMAP.

Which is the same as the regularized ERM predictor we saw in Section 7.5. This shows
that another interpertation of what regularization term λ is doing is that it is encoding our
prior beliefs about the parameters w∗.

Lasso Regression

In the previous section we assume that the parameters w1, . . . , wd are i.i.d. with a Gaussian
distribution. Another common choice is to assume that the parameters w1, . . . , wd are i.i.d.
with a Laplace distribution with mean 0 and scale parameter 1/λ. It can be shown that
the MAP solution is:

wMAP = argmin
w∈Rd+1

 n∑
i=1

(yi − x>i w)2

2 +
d∑
j=1

λ|wj |

 = argmin
w∈Rd+1

 1
n

n∑
i=1

(yi − x>i w)2 + 2
n

d∑
j=1

λ|wj |

 .
Optimizing this objective is known as Lasso regression.
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Chapter 9

Classification

So far we have only considered regression problems, where the labels have a notion of order.
In classification problems, the labels are unordered and usually belong to a finite set.
Example 9.1: [Types on Wine] Consider the problem of classifying wines into three types:
Barolo, Grignolino, and Barbera. The set of labels is Y = {Barolo,Grignolino,Barbera}.
For mathematical operations we will find it is often convenient to encode the labels as
integers, for example {0, 1, 2}. The number 0 would correspond to Barolo, 1 to Grignolino,
and 2 to Barbera. �

In Chapter 4 we discussed how for classification problems the loss function is often the
zero-one loss, defined as

`(ŷ, y) =
{

0 if ŷ = y,

1 otherwise.

The reason for this is that the labels are unordered, so there is no notion of distance between
them. Thus, if the prediction is correct, the loss is zero, and if it is incorrect, the loss is one.
If we use the set of labels Y = {0, 1, 2} (as in Example 9.1), then for a fixed true label y we
can plot the loss as a function of the predicted label ŷ, as shown in Fig. 9.1. An important

Figure 9.1: Zero-one loss for a fixed true label y = 1.

observation is that the zero-one loss is not a continuous function of the predicted label ŷ.
Suppose we try to use an ERM learner (Definition 1) to solve a classification problem.

We would first estimate the expected loss

L̂(f) = 1
n

n∑
i=1

`(f(xi), yi).

Then, we would need to minimize this estimated loss over the set of functions F . Even if we
define F to only contain functions that are continuous and described by some parameter w
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(as in linear regression), we will find that still the estimated loss L̂(f) is not continuous in w,
since the zero-one loss is not continuous. This means we can no longer use the optimization
techniques we learned in Chapter 6 to minimize the estimated loss. More generally, if a
function is not continuous, then it is often difficult to optimize it. To avoid this issue, we
can try a different learner from ERM. In particular, we will try a similar approach as in
Chapter 8.

Recall that the best possible predictor is the Bayes predictor

fBayes = argmin
f∈{f |f :X→Y}

L(f) where L(f) = E[`(f(X), Y )].

It can be shown that the following holds if the loss function is the zero-one loss:

fBayes(x) = argmax
y∈Y

p(y|x).

Importantly, if we know the pmf p(y|x), then we can compute the Bayes predictor. We have
already studied two methods (MLE and MAP) to do this in Chapter 8. In this chapter we
will focus on using the MLE method, however the MAP method can be used in the same
way.

Our goal will be to consider the case when the set of labels Y is finite and contains K
elements. However, to build intuition, we will first consider the case when there are only
two labels Y = {0, 1}.

9.1 Binary Classification

In binary classification, the set of labels is Y = {0, 1}. To get an estimate of fBayes, we need
to estimate the pmf p(y|x). We will do this using MLE. We are working in the supervised
learning setting, so we have a dataset D = ((X1, Y1), . . . , (Xn, Yn)). The feature-label pairs
(Xi, Yi) are i.i.d. samples from the joint distribution PX,Y . Since the labels can only take
two values, the distribution of Y given X = x can be described by a Bernoulli distribution
with some true parameter α∗(x) ∈ [0, 1]. This implies that the pmf p(y|x) is given by

p(y|x) = α∗(x)y(1− α∗(x))1−y.

Importantly, the pmf p(y|x) is entirely determined by the parameter α∗(x). Thus, esti-
mating p(y|x) is equivalent to estimating α∗(x). We need to make an assumption of what
the function α∗(x) is. So far in these notes we have used linear or polynomial functions,
which can take any value in R. However, in this case α∗(x) is a probability, so it must be
in the range [0, 1]. We will use the logistic (or sigmoid) function to ensure this. The logistic
function is defined as

σ(z) = 1
1 + e−z

.

The logistic function maps any real number to the range [0, 1], as shown in Fig. 9.2. Thus,
we will assume that

p(y|x) = p(y|x,w∗) = σ(x>w∗)y(1− σ(x>w∗))1−y,
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Figure 9.2: The logistic function.

where w∗ ∈ Rd+1 is the true weight vector.
Next, we procede to estimate the parameter w∗ using MLE. LetD = ((x1, y1), . . . , (xn, yn))

be a fixed dataset. Then

wMLE = argmax
w∈Rd+1

p(D|w)

= argmax
w∈Rd+1

n∏
i=1

p(xi, yi|w)

= argmax
w∈Rd+1

n∏
i=1

p(yi|xi,w)p(xi)

= argmin
w∈Rd+1

−
n∑
i=1

[log(p(yi|xi,w)) + log(p(xi))]

= argmin
w∈Rd+1

−
n∑
i=1

log(p(yi|xi,w)).

The above steps should all be familiar from Chapter 8. We can now plug in the definition
of p(yi|xi,w) and use the logarithm properties that log(ab) = log(a) + log(b) and log(ab) =
b log(a) to get

wMLE = argmin
w∈Rd+1

−
n∑
i=1

log
(
(σ(x>i w))yi(1− σ(x>i w))1−yi

)
= argmin

w∈Rd+1
−

n∑
i=1

[
yi log(σ(x>i w)) + (1− yi) log(1− σ(x>i w))

]
︸ ︷︷ ︸

g(w)

.

It can be shown that the function g(w) is convex, so we can use the optimization techniques
from Chapter 6 to minimize it. Unfortunately, there is no closed form solution for the
minimizer of g(w). However, we can use gradient descent to find an approximate solution.
We need to compute the gradient of g(w). To do this, we will work out the partial derivative
of g(w) with respect to the j-th component of w. First we define some terms:

ui = x>i w, vi = σ(ui), hi = yi log(vi), ri = (1− yi) log(1− vi).
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Then we have

∂g(w)
∂wj

= −
n∑
i=1

[
dhi
dvi

dvi
dui

∂ui
∂wj

+ dri
dvi

dvi
dui

∂ui
∂wj

]

We can work out each of the derivatives separately:
dhi
dvi

= yi
vi

= yi
σ(ui)

,
dri
dvi

= −1− yi
1− vi

= − 1− yi
1− σ(ui)

,
dvi
dui

= σ(ui)(1− σ(ui)),
∂ui
∂wj

= xij .

The derivative dvi
dui

takes a bit of work to compute and is left as an exercise for the reader.
Plugging these into the expression for ∂g(w)

∂wj
we get

∂g(w)
∂wj

= −
n∑
i=1

[
yi

σ(ui)
σ(ui)(1− σ(ui))xij −

1− yi
1− σ(ui)

σ(ui)(1− σ(ui))xij
]

= −
n∑
i=1

[yi(1− σ(ui))xij − (1− yi)σ(ui)xij ]

= −
n∑
i=1

[yixij − yiσ(ui)xij − σ(ui)xij + yiσ(ui)xij ]

=
n∑
i=1

[σ(ui)− yi]xij .

One interesting observation is that this gradient is very similar to the gradient of the loss
function in linear regression, if the predictor is given by σ(x>w)1. The gradient of g(w) is
then

∇g(w) =
n∑
i=1

[
σ(x>i w)− yi

]
xi,

and the update rule for gradient descent is

w(t+1) = w(t) − η(t+1)∇g(w(t)).

If we run gradient descent with a good step size η(t), for enough epochs T , then we should
expect w(T ) to be approximately equal to wMLE. If we have wMLE (or an approximation of
it), then we have an estimate of w∗. This implies that fMLE(x) = σ(x>wMLE) is approxi-
mately equal to σ(x>w∗) = α∗(x). Thus, p(y|x,wMLE) = σ(x>wMLE)y(1−σ(x>wMLE))1−y

is an estimate of p(y|x).
We can now use p(y|x,wMLE) to get an estimate of fBayes.

fBayes(x) = argmax
y∈Y

p(y|x)

≈ argmax
y∈{0,1}

p(y|x,wMLE)

= f̂Bin(x).
1This turns out to not be a coincidence. This example and the one covered in Section 8.1.2 are both

examples of generalized linear models.
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In particular, we can use the above function f̂Bin to define a learner for the binary classifi-
cation problem as

A(D) = f̂Bin(x).

To build some intuition for what f̂ is doing we can write out its defintion in conditional
form:

f̂Bin(x) =
{

1 if p(y = 1|x,wMLE) ≥ p(y = 0|x,wMLE),
0 if

But since p(y = 1|x,wMLE) = σ(x>wMLE) and p(y = 0|x,wMLE) = 1 − σ(x>wMLE), we
can simplify the above to

f̂Bin(x) =
{

1 if σ(x>wMLE) ≥ 0.5,
0 if σ(x>wMLE) < 0.5

=
{

1 if x>wMLE ≥ 0,
0 if x>wMLE < 0.

The last equality is true because the logistic function is increasing and crosses 0.5 at 0. The
reason the last expression is useful is that it shows that the output of fBin changes from 0
to 1 at the point x>wMLE = 0. The equation x>wMLE = 0 defines a hyperplane in Rd−1

and is called a decision boundary.
Example 9.2: Let d = 2. Then the decision boundary x>wMLE = 0 is a line in R2. To
see this notice that

x>wMLE = wMLE,0 + wMLE,1x1 + wMLE,2x2 = 0 =⇒ x2 = −wMLE,0
wMLE,2

− wMLE,1
wMLE,2

x1.

We can plot this decision boundary in the feature space, as shown in Fig. 9.3. The symbol

Figure 9.3: The decision boundary in the feature space.

"X" represents the data points that have a label of 0, and the small black circles represent
the data points that have a label of 1. The decision boundary is the line that best separates
the two classes. �
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9.1.1 Logistic Regression

You might have noticed that the binary classification learner we have defined above can
be thought of as a two step process. First, estimate the probability p(y|x), then use this
probability to predict the label. An important observation is that in the binary classification
case, since Y = {0, 1}, to estimate p(y|x) we just need to estimate p(y = 1|x) and p(y =
0|x). Further, since p(y = 0|x) = 1 − p(y = 1|x), we actually only need to estimate
p(y = 1|x) = α∗(x). It turns out that we can get the same estimate of p(y = 1|x) as we saw
above (i.e. fMLE) by thinking of the problem as a regression problem and using a function
class containing logistic functions. This is called logistic regression.

Suppose we have the same setup as in the binary classification problem. That is, we have
a dataset D = ((X1, Y1), . . . , (Xn, Yn)) where the labels are binary. Although we know that
Yi ∈ {0, 1}, we can define a new (larger) set of labels as YLog = [0, 1], which is the closed
interval from 0 to 1. We will think of the labels Yi as elements of YLog, and representing the
probability of the label being 1. For the loss function we will use the binary cross-entropy
loss, defined as

`(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ).

The function class will contain the logistic functions, defined as

F =
{
f |f : Rd+1 → [0, 1], where f(x) = σ(x>w), and w ∈ Rd+1

}
.

The ERM learner for this problem is

A(D) = f̂ERM where f̂ERM = argmin
f∈F

L̂(f).

If we solve for f̂ERM we get that

f̂ERM = argmin
f∈F

1
n

n∑
i=1

`(f(xi), yi)

= argmin
f∈F

1
n

n∑
i=1

[−yi log(f(xi))− (1− yi) log(1− f(xi))]

= argmin
f∈F

−
n∑
i=1

[yi log(f(xi)) + (1− yi) log(1− f(xi))]

= fMLE.

The second last equality holds since scaling a function by a constant (1/n) does not change
the minimizer. The last equality holds by noticing that the function being minimized is
exactly the function g(w) defined above. This result shows that the MLE function fMLE
can be thought of as the solution to the logistic regression problem, where the loss function
is the cross-entropy loss. In the other direction, f̂ERM can be understood as predicting
p(y = 1|x) = α∗(x), since that is what fMLE does.
Exercise 9.1: Suppose that you try to solve for f̂ERM using gradient descent with 200
epochs. You save the predictors at the end of each epoch and call them f̂ (1), . . . , f̂ (200).
You plot the estimated loss L̂(f̂ (T )) (with the binary cross-entropy loss function) as a
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Figure 9.4: Estimated loss as a function of the epoch number.

function of the epoch number T and get the plot shown in Fig. 9.4. You can get a
binary classification predictor f (T )

bin by thresholding the output of f̂ (T ) at 0.5. That is,
f

(T )
bin (x) = 1 if f̂ (T )(x) ≥ 0.5 and 0 otherwise. Let f∗ = argminf∈F L(f), and fBayes =

argminf∈{f :f :X→Y} L(f), where the loss function is the zero-one loss. What is the relation-
ship between L̂(f (T )

bin ), L(f (T )
bin ), L(f∗), L(fBayes), where the loss function is the zero-one loss?

�

Polynomial Features and Regularization

In the above discussion we assumed that a linear function of the features passed as input
to the logistic function was sufficient to model the data. However, fBayes could be more
complex than this. As we have seen before, one way to address this is to transform the
features using the polynomial function φp. If we do this then the function class will become
more complex, and we will be able to model more complex relationships between the features
and the labels (lower approximation error). However, increasing the complexity too much
can lead to overfitting (higher estimation error). The ideas discussed in Chapter 7 can then
be used to select the best polynomial degree p.

An alternative to selecting the polynomial degree is to use regularization. In this case
we would select a large polynomial degree and then use then try different values of the
regularization parameter λ to find the best predictor. Again the same ideas from Chapter 7
can be used to select the best λ. Similarly, the MAP interpretation of regularization can
be worked out for the binary classification problem.
Exercise 9.2: Let D = ((x1, y1), . . . , (xn, yn)) be a dataset and d = 2. Suppose that for
p = 1 and p = 5 you are given fMLE, p(x) = σ(φp(x)>wMLE, p), which is the MLE solution
based on D when assuming that α∗(x) = σ(φp(x)>w∗). You define the binary classification
predictor fBin, p(x) as 1 if fMLE, p(x) ≥ 0.5 and 0 otherwise. The decision boundary of
fBin, p is the set of points x such that fMLE, p(x) = 0.5. You plot the dataset and the
decision boundary for p = 1 and p = 5 and get the plots shown in Fig. 9.5. What are the
answers to the following questions?

1. Is the decision boundary for p = 1 the line x>wMLE, 1 = 0, and is the decision
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Figure 9.5: Decision boundary for p = 1 and p = 5.

boundary for p = 5 the curve phi(x)>wMLE, 5 = 0?

2. Is the left or right plot for p = 1?

3. What does the green and red region represent in each plot?

4. If you changed the threshold for the binary classification predictor from 0.5 to 0.1,
how would the decision boundary change in each plot?

5. Which of the two predictors fBin, 1 and fBin, 5 has a lower estimated loss on the dataset
D with the zero-one loss function?

6. Is p = 5 or p = 1 more likely to overfit the dataset D?

�

Logistic Regression vs. Linear Regression for Predicting Probabilities

When we think of binary classification as the two step process discussed above, it may not
be entirely clear that using the logistic function class and the cross-entropy loss is the best
way to estimate p(y = 1|x). For instance, we could use the linear function class and the
squared loss to estimate p(y = 1|x). It turns out that this idea runs into some issues, when
the value of x varies much more for one class than the other. We will not go into the
mathematical details here, but we give a visual example to build some intuition.
Example 9.3: Let d = 1. We can plot the dataset, where the x-axis represents the single
feature x1 and the y-axis represents the label, shown in Fig. 9.6. The logistic regression
learner would output a predictor defined by the logistic function, shown as the purple
curve. Then, the binary classification learner would output a predictor which outputs 1 if
the logistic function is greater than 0.5 and 0 otherwise, shown as the purple dotted line.
The linear regression learner would output a predictor defined by a linear function, shown
as the green line. Then, the binary classification learner would output a predictor which
outputs 1 if the linear function is greater than 0.5 and 0 otherwise, also shown as the purple
dotted line. In this plot we have made the dataset such that features have similar variance
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Figure 9.6: Linear vs. logistic regression for features with similar variance for both classes.

for the two classes. In this case, the logistic regression learner and linear regression learner
would perform similarly.

Suppose that we have the same dataset, but with one extra datapoint that has a label of
1 but a very large value of x1. This is shown as the red point in Fig. 9.7. This new datapoint

Figure 9.7: Linear vs. logistic regression for features with differing variance for each class.

would barely change the logistic regression predictor, since the logistic function (in purple)
is already close to 1 for large values of x1. However, the linear regression predictor (in
green) would be significantly affected by this new datapoint. Notice how if you were to
extrapolate the green line in Fig. 9.6 to the right you would get a value much greater than 1
when you reach the red point. Since the linear regression learner is using the squared loss, it
would experience a large loss for this new datapoint. As such, the linear regression learner
would try to move the green line to the right to reduce the loss. The new linear regression
predictor is shown as the green line in Fig. 9.7. Notice how the decision boundary, when
the linear function is equal to 0.5, has moved to the right, shown as the green dotted line.
Importantly, what you should notice is that since the decision boundary has moved to the
right, the linear regression learner would now predict 0 for more datapoints, many of which
have a label of 1. �
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9.2 Multiclass Classification

In the binary classification problem we had two labels, so the set of labels was Y = {0, 1}.
In the mutliclass classification problem we have K labels, so the set of labels is Y =
{0, 1, . . . ,K − 1}. Clearly the binary classification problem is a special case of the mut-
liclass classification problem, where K = 2. Our objective will again be to estimate the
Bayes predictor fBayes, by estimating the pmf p(y|x) using MLE.

The setting starts as before. We have a dataset D = ((X1, Y1), . . . , (Xn, Yn)) where the
feature-label pairs are i.i.d. samples from the joint distribution PX,Y . However, since the
labels can take K values, the distribution of Y given X = x can no longer be described
by a Bernoulli distribution. Instead, we will use a categorical distribution, which is a
generalization of the Bernoulli distribution to K values. The categorical distribution is
defined by a vector of parameters α∗(x) = (α∗0(x), . . . , α∗K−1(x)) ∈ [0, 1]K . Each of the
α∗y(x) is the probability that the label is y given the feature x. In particular, the pmf p(y|x)
is given by

p(y|x) = α∗y(x) for y ∈ Y.

Of course, since the parameters α∗(x) are probabilities, they must be in the range [0, 1] and
sum to 1. That is ∑K−1

q=0 α∗q(x) = 1.
Now we need to make an assumption of what the function α∗y(x) is for each y ∈ Y. In the

binary classification case we only needed to estimate a single parameter α∗(x) ∈ [0, 1], so it
suficed to have one weight vector w∗ that linearly mapped the features to a real number,
and then to pass this through the logistic function to ensure it was in the range [0, 1]. In
the mutliclass classification case we have K parameters α∗(x). One option is to assume
that there are K weight vectors w∗0, . . . ,w∗K−1 ∈ Rd+1, such that α∗y(x) = σ(x>w∗y), for
each y ∈ Y. However, this is not often done because once we estimate the K weight vectors,
it is unlikely that the K estimates will sum to 1. Instead we will want to use a function
other than the logistic function that takes as input all K linear functions of the features and
outputs K probabilities that sum to 1. The function we will use is the softmax function,
defined as

σ(z) = (σ0(z), . . . , σK−1(z)) where σy(z) = exp(zy)∑K−1
q=0 exp(zq)

∈ [0, 1], for y ∈ Y.

We have overloaded the σ function here, since σ was previously used to denote the logistic
function. However, it should be clear which function is being referred to based on the input,
since for the softmax function takes input a vector z ∈ RK and the logistic function takes
input a scalar z ∈ R. Notice how the softmax function ensures that the K probabilities
sum to 1 since

K−1∑
y=0

σy(z) =
K−1∑
y=0

exp(zy)∑K−1
q=0 exp(zq)

=
∑K−1
y=0 exp(zy)∑K−1
q=0 exp(zq)

= 1.

In conclusion, we will assume that

p(y|x) = p(y|x,w∗0, . . . ,w∗K−1) = σy(x>w∗0, . . . ,x>w∗K−1) where w∗y ∈ Rd+1 for y ∈ Y.
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We can now estimate the parameters w∗0, . . . ,w∗K−1 using MLE. LetD = ((x1, y1), . . . , (xn, yn))
be a fixed dataset. Then

wMLE,0, . . . ,wMLE,K−1 = argmin
w0,...,wK−1∈Rd+1

−
n∑
i=1

log(p(yi|xi,w0, . . . ,wK−1)) (9.1)

= argmin
w0,...,wK−1∈Rd+1

−
n∑
i=1

log
(

exp(x>i wyi)∑K−1
q=0 exp(x>i wq)

)

= argmin
w0,...,wK−1∈Rd+1

−
n∑
i=1

x>i wyi − log

K−1∑
q=0

exp(x>i wq)


︸ ︷︷ ︸

g(w0,...,wK−1)

.

The last equality used the logarithm property log(a/b) = log(a) − log(b). The function
g(w0, . . . ,wK−1) is convex, so we can use the optimization techniques from Chapter 6 to
minimize it. Similar to the binary classification case, there is no closed form solution for
the minimizer of g(w0, . . . ,wK−1). As such, we wil need to use gradient descent to find an
approximate solution. To calculate the gradient of g(w0, . . . ,wK−1) we will need to work
out the partial derivative of g(w0, . . . ,wK−1) with respect to the j-th component of wy

(written as wyj). Before doing so we will define some terms:

uiq = x>i wq, viq = exp(uiq), ri =
K−1∑
q=0

viq, hi = log(ri).

Then, we have

∂g

∂wyj
(w0, . . . ,wK−1) = −

n∑
i=1

∂uiyi
∂wyj

− dhi
dri

K−1∑
q=0

dviq
duiq

∂uiq
∂wyj

 . (9.2)

To work out each of the derivatives it will be helpful to introduce the indicator function
IZ(z), which is defined as

IZ(z) =
{

1 if z ∈ Z,
0 otherwise.

Now we can work out the derivatives in Eq. (9.2).
dhi
dri

= 1
ri
,

dviq
duiq

= exp(uiq),
∂uiq
∂wyj

= I{q}(y)xij
∂uiyi
∂wyj

= I{yi}(y)xij .

Plugging these into Eq. (9.2) we get

∂g

∂wyj
(w0, . . . ,wK−1) = −

n∑
i=1

I{yi}(y)xij −
1
ri

K−1∑
q=0

exp(uiq)I{q}(y)xij


= −

n∑
i=1

[
I{yi}(y)xij −

exp(uiy)
ri

xij

]

= −
n∑
i=1

[
I{yi}(y)xij −

exp(x>i wy)∑K−1
q=0 exp(x>i wq)

xij

]

=
n∑
i=1

[
σy(x>i w0, . . . ,x>i wK−1)− I{yi}(y)

]
xij .
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For y ∈ Y, the gradient of g(w0, . . . ,wK−1) with respect to wy is

∇wyg(w0, . . . ,wK−1) =
(

∂g

∂wy0
(w0, . . . ,wK−1), . . . , ∂g

∂wyd
(w0, . . . ,wK−1)

)>

=
n∑
i=1

[
σy(x>i w0, . . . ,x>i wK−1)− I{yi}(y)

]
xi.

The gradient descent update rule for class y is then

w(t+1)
y = w(t)

y − η(t)∇wyg(w(t)
0 , . . . ,w(t)

K−1).

An important note is that for each iteration t we will need to update all K weight vectors.
It would be incorrect to only perform gradient descent for T epochs on one weight vector
and then move on to the next weight vector and repeat this process for all K weight vectors.

If we select a good step size, and run for enough epochs T , then we should expect
w(T )

0 , . . . ,w(T )
K−1 to be approximately equal to wMLE,0, . . . ,wMLE,K−1. Then, if we have

wMLE,0, . . . ,wMLE,K−1 (or an estimate), we have an estimate of w∗0, . . . ,w∗K−1, and can use
this to estimate fBayes.

fBayes(x) = argmax
y∈Y

p(y|x)

≈ argmax
y∈{0,1,...,K−1}

p(y|x,wMLE,0, . . . ,wMLE,K−1)

= f̂Mul(x).

This gives us a learner for the mutliclass classification problem as

A(D) = f̂Mul(x).

Exercise 9.3: Let D = ((x1, y1), . . . , (xn, yn)) be a dataset with d = 2 and K = 3. To
simplify notation let σy = σy(x>wMLE,0,x>wMLE,1,x>wMLE,2) The decision boundary of
fMul for classes y 6= k is the set of points x such that

σy = σk and σq ≤ σk for y 6= q 6= k.

You plot the dataset and all the decision boundaries and get the plot shown in Fig. 9.8.
What are the answers to the following questions?

1. What is the condition that holds when all three decision boundaries intersect?

2. What is equation of the line representing the decision boundary for classes 0 and 1?

3. How might the decision boundaries change if we got the MLE solution by assuming
that

p(y|x) = σy(φp(x)>w∗0, . . . , φp(x)>w∗K−1) where w∗y ∈ Rp̄ for y ∈ Y,

for some p > 2?

�
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Figure 9.8: Decision boundaries for K = 3.

9.2.1 Softmax Regression

Similar to the binary classification case, we can think of the mutliclass classification learner
as a two step process. First, estimate the probabilities p(y|x), then use these probabilities
to predict the label. Now, however, we have K probabilities to estimate. It again turns out
that we can get the same estimate of p(y|x) = α∗y(x) as we saw above by thinking of the
problem as a regression problem and using a function class containing softmax functions.
This is called softmax regression.

In softmax regression we will have a new set of labels YSoft representing the probabilities
of the classes 0, 1, . . . ,K−1. Since there are K probabilities each label in YSoft will be a vec-
tor of length K, and thus YSoft = [0, 1]K . For example if K = 3, then the label (0.2, 0.8, 0)>
would be interpreted as the probability of the class being 0 is 0.2, the probability of the
class being 1 is 0.8, and the probability of the class being 2 is 0. Thus, it is necessary to
convert the original labels 0, 1, . . . ,K − 1 to new labels in YSoft using a one-hot encoding.
The one-hot encoding of a label y ∈ Y is a vector of length K where the y-th element is
1 and all other elements are 0. For example, if K = 3 then the one-hot encoding of an
original label y ∈ Y would be

y = 0→ (1, 0, 0)> ∈ YSoft,

y = 1→ (0, 1, 0)> ∈ YSoft,

y = 2→ (0, 0, 1)> ∈ YSoft.

Thus, for softmax regression we will use a modified dataset DSoft = ((x1,y1), . . . , (xn,yn))
where each of the labels yi are one-hot encoded. The loss function will be the multiclass
cross-entropy loss, defined as

`(ŷ,y) = −
K−1∑
q=0

yq log(ŷq).
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The function class will contain the softmax functions, defined as

F =
{
f |f : Rd+1 → [0, 1]K , where f(x) = σ(x>w0, . . . ,x>wK−1), and wy ∈ Rd+1 for y ∈ Y

}
.

The ERM learner for this problem is
A(D) = f̂ERM where f̂ERM = argmin

f∈F
L̂(f).

If we solve for f̂ERM we get that

f̂ERM = argmin
f∈F

1
n

n∑
i=1

`(f(xi),yi)

= argmin
f∈F

1
n

n∑
i=1
−
K−1∑
q=0

yiq log(fq(xi))

= argmin
f∈F

−
n∑
i=1

K−1∑
q=0

yiq log(fq(xi))

= fMLE.

The function fMLE is defined as fMLE(x) = σ(x>wMLE,0, . . . ,x>wMLE,K−1). The notation
fq(x) is used to denote the q-th element of the vector f(x). The second last equality holds
since scaling a function by a constant (1/n) does not change the minimizer. The last equality
can be shown by carefully comparing to Eq. (9.1).

Similar to the logistic regression case, the above result shows an interesting connection
between the MLE solution and the softmax regression problem. In particular, it shows
that the ERM predictor f̂ERM can be understood as predicting the vector of probabilities
(p(y = 0|x), . . . , p(y = K − 1|x)) = α∗(x), since that is what fMLE does.

9.2.2 Logistic Regression as a Special Case of Softmax Regression

One might suspect that logistic regression is a special case of softmax regression, since it
considers the case where K = 2. However, the logistic function and the softmax function
are different, so it is not immediately clear if this is the case. Next, we will show that
logistic regression solution is the same as the softmax regression solution when K = 2.

To show this, it will be easier to work with the MLE setting for binary and mutliclass
classification. This is without loss of generality, since in Sections 9.1.1 and 9.2.1 we showed
the equivilence between the ERM and MLE solutions in the binary and multiclass classifica-
tion respectively. Suppose we follow the same MLE steps as in the multiclass classification
case, but with K = 2. The labels are Y = {0, 1}. We assume that the distribution of Y
given X = x is a categorical distribution with parameters α∗(x) = (α∗0(x), α∗1(x)). The
pmf p(y|x) is then given by

p(y = 1|x) = α∗1(x) and p(y = 0|x) = α∗0(x).
Notice, however, that α∗0(x) = 1 − α∗1(x), since p(y = 0|x) + p(y = 1|x) = 1. Thus, the
parameter α∗0(x) is redundant, and we can just use α∗1(x)2. This means that the distribution

2This is true in general for the categorical distribution, not just when K = 2. In particular only K − 1
parameters are needed to define the categorical distribution, since the K-th parameter can be calculated
from the other K− 1 parameters. However, it is still common to use K parameters, since it makes the math
simpler.

133



of Y given X = x is a Bernoulli distribution with the parameter α∗(x) = α∗1(x). Thus, the
distribution assumption for the binary classification and the mutliclass classification is the
same. If we can show that the MLE estimate of α∗1(x) in the multinomial classification case
is the same as the estimate of α∗(x) in the binary classification case then we are done. This
is what we will show next.

In the multiclass case we assume that the function α∗1(x) is given by σ1(x>w∗0,x>w∗1).
For any two weight vectors w0,w1 ∈ Rd+1 we can rexpress σ1(x>w0,x>w1) by using the
exponential property that exp(a) exp(b) = exp(a+ b) as follows

σ1(x>w0,x>w1) = exp(x>w1)
exp(x>w0) + exp(x>w1)

= exp(x>w1)
exp(x>w0) + exp(x>w1)

exp(−x>w1)
exp(−x>w1)

= exp(x>(w1 −w1))
exp(x>(w0 −w1)) + exp(x>(w1 −w1))

= 1
exp(−x>(w1 −w0)) + 1

= σ(x>(w)). (9.3)

The last equality holds by the definition of the logistic function and letting w = w1 −w0.
In the multiclass case the MLE solution is

wMLE,0,wMLE,1 = argmin
w0,w1∈Rd+1

−
n∑
i=1

log(p(yi|xi,w0,w1))

= argmin
w0,w1∈Rd+1

−
n∑
i=1

log
(
σyi(x>i w0,x>i w1)

)
= argmin

w0,w1∈Rd+1
−

n∑
i=1

[
yi log(σ1(x>i w0,x>i w1)) + (1− yi) log(σ0(x>i w0,x>i w1))

]
= argmin

w0,w1∈Rd+1
−

n∑
i=1

[
yi log(σ(x>i (w1 −w0))) + (1− yi) log(1− σ(x>i (w1 −w0)))

]
︸ ︷︷ ︸

g(w0,w1)

.

The second last equality holds by observing that when yi = 1 the second term in the
summand is 0 and when yi = 0 the first term in the summand is 0. The last equality holds
by the result we derived in Eq. (9.3). Notice that although g(w0,w1) is a function of two
vectors, it is equivilent to a function h(w) of only one vector, where w = w1−w0, since the
two vectors only appear as the difference w1 −w0 in g. This is an important observation,
since in the binary classification case the MLE solution is

wMLE = argmin
w∈Rd+1

−
n∑
i=1

[
yi log(σ(x>i w)) + (1− yi) log(1− σ(x>i w))

]
= argmin

w∈Rd+1
h(w).

Thus, wMLE = wMLE,1 −wMLE,0.
Finally, by Eq. (9.3) we have that

σ(x>wMLE) = σ1(x>wMLE,0,x>wMLE,1).
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Confirming that the MLE estimate of α∗(x) in the binary classification case and the MLE
estimate of α∗1(x) in the multiclass classification case are indeed the same.
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Chapter 10

Neural Networks

In the previous chapters we have learned that depending on the set of labels we should use
different function classes. For instance, if the labels can be any real number, we should
use linear functions, while if the labels are in the interval [0, 1] we should apply the logistic
function on top of the linear functions. However, sometimes the relationship between the
features and the label is not linear. To address this problem we introduced the polynomial
feature map φp (see Section 6.6), which transforms the original feature vector x, into a
polynomial feature vector φp(x) of degree p. As the degree p increases, the function class
using the polynomial feature map is able to represent more complex relationships between
the features and the label. Since the feature map φp is a fixed function, some of the features
in φp might not be relevant for the supervised learning problem at hand. For example, if
d = 2 and the labels have a quadratic relationship only depending of the first feature x1,
then the polynomial feature map φ2(x) would have the features x2

2 and x1x2, which are both
irrelevant. In this chapter we will introduce a new function, the neural network (NN), which
unlike the functions using the polynomial feature map, can learn which features are relevant
for the supervised learning problem at hand. More precisely, we will study a specific type
of neural network called a multilayer perceptron (MLP), which we will simply refer to as a
NN in these notes.

10.1 Neural Networks: A Special Case

A neural network is a function f : X → Y. In this section we will study a specific (NN)
to introduce the concept. In the next section we will introduce the general structure of a
NN. It is often helpful to visually represent a NN. The specific NN we will discuss in this
section is shown in Fig. 10.1. The input x is shown on the left, and the output f(x) = a(3)

is shown on the right. You should think of information as flowing from left to right. Next,
we introduce some terminology and notation to describe the NN, shown in Fig. 10.2. Each
of the circles in the figure is called a neuron, and the lines connecting the neurons are called
weights. A column of neurons is called a layer. This NN has three layers, since the input
layer is not counted. The value of a neuron is called its activation and is written as a(b)

j ,
where the superscript b is the layer number and the subscript j is the neuron number. It
is convenient to group all the activations in a layer into a vector, which we will denote as
a(b). An activation depends on all of the activations in the previous layer, and the weights
connecting to it. For instance, the activation a(1)

1 depends on the input x = a(0) and the
weights connecting to it (shown as blue lines), which we will call w(1)

1 . The output of the
NN function f(x) is the activation of the last layer, a(3).

Now, we will define how the activations are computed, which will give us the formal
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Figure 10.1: A specific neural network.

Figure 10.2: A specific neural network with annotations.

definition of the NN f(x), since it is equal to the activation of the last layer. Lets begin
with layer 1. The activation vector is

a(1) = (a(1)
0 = 1, a(1)

1 , a
(1)
2 )

Notice how the first activation a(1)
0 is equal to 1, which represents the bias term. The reason

for including the bias term is the same as in linear regression. Each activation in layer 1 is
defined as

a
(1)
1 = h(1)(z(1)

1 ), a(1)
2 = h(1)(z(1)

2 ) where z
(1)
1 = x>w(1)

1 , z
(1)
2 = x>w(1)

2 ,

and h(1) : R → R is an activation function. One example of an activation function which
we have seen before is the logistic function, in which case you can think of the neuron as
being active when the pre-activation z is positive (logistic function is approximately 1),
and inactive when the pre-activation z is negative (logistic function is approximately 0).
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The weight vectors w(1)
1 and w(1)

2 represent the blue and green lines respectively between
the input layer and layer 1. The terms z(1)

1 and z
(1)
2 are called pre-activations. Notice

how indeed the activations only depend on the previous activation vector a(0) = x and the
weights connecting to them. An activation cannot depend on the activations or weights
of any other layer other than the previous one. The dimensionality of the terms we have
defined so far are

x ∈ Rd+1, w(1)
1 ,w(1)

2 ∈ Rd+1, a(1) ∈ R2+1.

In the next layer, the activations are computed in the same way as in layer 1. The
activation vector is

a(2) = (a(2)
0 = 1, a(2)

1 , a
(2)
2 ),

and each activation is defined as

a
(2)
1 = h(2)(z(2)

1 ), a(2)
2 = h(2)(z(2)

2 ), where z
(2)
1 =

(
a(1))>w(2)

1 , z
(2)
2 =

(
a(1))>w(2)

2 .

The weight vectors w(2)
1 and w(2)

2 represent the blue and green lines respectively between
layer 1 and layer 2. The activation function h(2) can be different from the activation function
h(1). The dimensionality of the new terms we have defined are

w(2)
1 ,w(2)

2 ∈ R2+1, a(2) ∈ R2+1.

Finally, the output of the NN is the activation of the last layer, a(3), defined as

a(3) = h(3)(z(3)), where z(3) =
(
a(2))>w(3).

The weight vector w(3) represents the blue lines between layer 2 and the output. The
function h(3) can again be different from the activation functions h(1) and h(2). The dimen-
sionality of the new terms we have defined are

w(3) ∈ R2+1, a(3) ∈ R.

Now that we have studied some specific neural networks, we will introduce the general
definition of a neural network in the next section.

10.2 Neural Networks: The General Case

In general, a neural network f can have any number of layers B ∈ {1, . . . }. Each layer
b ∈ {1, . . . , B} can have any number of non-bias neurons d(b) ∈ {1, . . . }. The number of
non-bias neurons in the input layer will sometimes be denoted as d(0) = d. Each layer
except the output layer has a bias neuron always set to 1, thus the number of neurons in
layer b ∈ {0, . . . , B − 1} is d(b) + 1. The output layer does not have a bias neuron, since its
activations are not used to compute any other activations, thus the number of neurons in
the output layer is d(B). A general NN structure is shown in Fig. 10.3. For an input feature
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Figure 10.3: A general neural network structure.

vector x, the output of the NN is f(x) = a(B). Next, we define the terms in a NN, which
leads to the definition of a(B). For any layer b ∈ {1, . . . , B}, we have

Weights: w(b)
1 , . . . ,w(b)

d(b) ∈ Rd
(b−1)+1

Pre-activations: z(b) =
(
z

(b)
1 , . . . , z

(b)
d(b)

)
∈ Rd

(b)
,

where z
(b)
j =

(
a(b−1)

)>
w(b)
j for j ∈ {1, . . . , d(b)}.

Activation function: h(b) : R→ R

Activations: a(0) = x ∈ Rd+1 = Rd
(0)+1,

a(b) =
(
a

(b)
0 = 1, a(b)

1 , . . . , a
(b)
d(b)

)
∈ Rd

(b)+1 except b = B,

a(B) =
(
a

(B)
1 , . . . , a

(B)
d(B)

)
∈ Rd

(B)
,

where a
(b)
j = h(b)(z(b)

j ) for j ∈ {1, . . . , d(b)}.

We can simplify the above equations by using matrix notation. We will store all the
weight vectors w(b)

1 , . . . ,w(b)
d(b) at a layer b as columns in a matrix

W(b) =

 | | |
w(b)

1 w(b)
2 · · · w(b)

d(b)

| | |

 .
The matrix W(b) has d(b−1) + 1 rows and d(b) columns. The activation vector at layer b can
now be written as

a(b) = h(b)(z>) where h(b)(z>) = (h(b)(z1), . . . , h(b)(zd(b))) and z> =
(
a(b−1))>W(b).

This implies that the NN function can be written as follows

f(x) = a(B) = h(B)
(
h(B−1)

(
· · ·h(2)

(
h(1)

(
x>W(1)

)
W(2)

)
· · ·W(B−1)

)
W(B)

)>
.
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The above equation clearly shows that f(x) is a composition of the activation functions h(b)

applied to the pre-activations z(b) at each layer b. Using the above equation we can also
easily motivate the use of activation functions. Suppose that we did not use any activation
functions, which is equivilent to using the identity function h(B)(z) = · · · = h(1)(z) = z.
Then, the NN function would be

f(x) = x>W(1)W(2) · · ·W(B) = x>W,

where W = W(1)W(2) · · ·W(B). This is just a linear function. Thus, if we would like the
NN function to be able to represent non-linear relationships between the features and the
label, we should use activation functions that are non-linear.

Every NN satisfies the above equations. Thus, to define a NN we need to specify
the number of layers B, the number of neurons in each layer d(1), . . . , d(B), the activation
functions h(1), . . . , h(B), and the weights w(b)

1 , . . . ,w(b)
d(b) for each layer b ∈ {1, . . . , B}. If

we only specify the number of layers, number of neurons in each layer, and the activation
functions, we will have a NN architecture. For instance if the activation functions are all the
logistic function, then in Section 10.1 we studied the NN architecture with B = 3 layers,
and d(1) = 2, d(2) = 2, d(3) = 1 neurons in each layer. Some of the functions we have seen
before can also be represented as NNs.
Example 10.1: [Linear Function]
The linear function f(x) = x>w can be represented as

Figure 10.4: A NN representing
the linear or logistic function.

a NN with B = 1 layer and d(1) = 1 neuron. The acti-
vation function is the identity function h(1)(z) = z. The
weight vector is w(1)

1 = w. Visually, the NN is shown in
Fig. 10.4. �

Example 10.2: [Logistic Function] The logistic func-
tion applied to a linear function f(x) = σ(x>w) can
be represented as a NN with B = 1 layer and d(1) = 1
neuron. The activation function is the logistic function
h(1)(z) = σ(z). The weight vector is w(1)

1 = w. Notice
how this can again be visualized as in Fig. 10.4, since the
only difference is the activation function. �

Notice how once a specifc NN architecture is chosen, the NN is uniquely defined by its
weights. Importantly, this implies that optimizing over a set of NNs with a fixed architecture
is equivalent to optimizing over the set of weights that uniquely define the NNs1. We will
make use of this property in the next section, where we describe how ERM can be used
with the NN function class.

1It may seem arbitrary as to why we choose to only optimize over the weights and not any other term
that defines the NN architecture, such as the number of layers or the number of neurons in each layer. The
reason for this is that the NN is a continuous function of the weights, that is, small changes in the weights
result in small changes in the NN values. On the other hand, small changes in the number of layers or the
number of neurons in each layer can result in large changes in the NN values. If we were to optimize over the
number of layers or the number of neurons in each layer, we would be optimizing over a discrete space, which
is usually more difficult and the techniques we learned in Chapter 6 would not apply. The same reasoning
applies for why we did not optimize over the polynomial degree p in Section 6.6
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10.3 ERM with Neural Networks
In this section we will discuss the ERM learner that uses a NN function class. The ERM
learner is defined as

A(D) = f̂ = argmin
f∈F

L̂(f) where L̂(f) = 1
n

n∑
i=1

`(f(xi), yi).

The function class F is the set of all NNs with a fixed architecture, written as

F = {f |f : X → Y where f is a NN with a fixed architecture} .

As we discussed in the previous section, the important thing to notice is that since F
contains NNs with a fixed architecture, each NN is uniquely defined by its weights. In
particular, each f ∈ F can be written as f(x) = a(B) where a(B) is computed using some
weight matrices W(1), . . . ,W(B). To make this relationship explicit, we will write a NN
from the function class with a subscript fW(1),...,W(B) to denote the weights that define the
NN. Now, we can optimize over the weights to find the best NN in the function class F .
The ERM learner becomes

A(D) = f̂ where f̂(x) = a(B) is defined by the weight matrices

Ŵ(1), . . . ,Ŵ(B) = argmin
W(1),...,W(B)

1
n

n∑
i=1

`
(
fW(1),...,W(B)(xi), yi

)
.

Unless the activation functions are all the identity function, there is usually no closed form
solution to the above optimization problem. Thus, we have to use gradient descent to find
the optimal weights. The update rule for the weight vector at layer b ∈ {1, . . . , B} and
neuron j ∈ {1, . . . , d(b)} is(

w(b)
j

)(t+1) =
(
w(b)
j

)(t) − η(t)∇w(b)
j

L̂
(
fW(1),...,W(B)

)
,

where L̂
(
fW(1),...,W(B)

)
= 1
n

n∑
i=1

`
(
fW(1),...,W(B)(xi), yi

)
.

The gradient can be worked out by using several applications of the chain rule, however, we
will not work out the details in these notes. The process of computing the gradient in the
above update rule is often referred to as backpropagation, since the gradients at layer b can
be shown to depend on the gradients at layer b+ 1, hence propogating backwards through
the layers.

Unfortunately, unless the neural network is very simple (such as linear or a logistic func-
tion), and the loss function is chosen appropriately, the optimization problem is non-convex
in general. This means that gradient descent might not approach the actual minimizer of
the estimated loss function. Instead, gradient descent might get stuck in what is called a
local minimum. The details of non-convex optimization and how NNs behave is beyond the
scope of these notes.

141



10.4 Neural Networks Learning Better Features
In this section our goal is to show what the activations of the NN output by the ERM
learner might represent.

Before we begin, let us return to the only method we have used so far to improve
our feature representation, the polynomial feature map φp. Suppose that the label has a
quadratic relationship with the first feature x1, that is y ≈ x2

1. To model this relationship
we would need to use at least p = 2 in the polynomial feature map φp. If d = 3 then
φ2(x) = (1, x1, x2, x3, x

2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3) ∈ R10, which has 6 new features compared

to the original feature vector x. We can visualize the new feature space and how it can
be used in a linear function in Fig. 10.5. Notice, however, that only the new feature x2

1

Figure 10.5: The polynomial feature map φ2(x) and a linear function in the new features.

is relevant for the supervised learning problem at hand. As such, 5 of the new features
in φ2(x) are irrelevant, namely, x1x2, x1x3, x

2
2, x2x3, x

2
3. It would be much more desirable

if we could have a function that could learn which features are relevant for the supervised
learning. This is where the NN comes in. The claim is that the activations of the NN output
by the ERM learner can be thought of as representing better features as we move through
the layers of the NN. To illustrate this we will use a classic example of classifying wether
an image contains a cat or not. This task is challenging because the features that define a
"cat" are not directly apparent from the raw input data, but the NN learns to extract and
combine these features effectively.
Example 10.3: [Image Classification] Suppose that we have an image classification problem
where the input is a black and white 16 × 16 pixel image and the set of labels is Y =
{0, 1}, where 1 represents that the image contains a cat. Similar to logistic regression (see
Section 9.1.1), we would like to predict the probability that the image contains a cat, but
now with a NN. We need to convert the pixel image into a feature vector x. The pixel
image contains 16 × 16 = 256 pixels, each representing the intensity of the pixel. We can
flatten the pixel image into a feature vector and add a bias term to get x ∈ R256+1. This is
shown in Fig. 10.6.

We decide to use a NN architecture with B = 3 layers, d(1) = 100, d(2) = 50, d(3) = 1
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Figure 10.6: The flattened pixel image.

neurons in each layer, and the logistic function for all the activation functions. The output
of the neural network is f(x) = a(3), representing the probability that the image contains
a cat. This is shown in Fig. 10.7. The ERM learner will learn some weight matrices using

Figure 10.7: A NN for image classification.

gradient descent. On the zeroth epoch, the weights are initialized randomly, and thus the
activations of the NN are random and do not represent anything meaningful. However,
as the number of epochs increases, the activations of the NN will start to represent better
features. The type of features we might expect the activations to learn after a large number
of epochs is often described as follows. Lets first focus on the activation a(1)

1 from the first
layer. This activation will have different values depending on the input image x. Suppose
that we took the feature vector x that makes the value of a(1)

1 largest and visualized the
image. What we would likely find is that this is an image of something like the edge a cats
back or the edges of a cats feet. This image is thought of as the feature that a(1)

1 has learned
to represent. If we perform the same procedure for all of the activations in the first layer,
and would likely find that each activation represents a different feature, each of which is
slightly more complex than the raw pixel values.

We can of course perform the same procedure for the activations in the second layer.
What we would likely find is that the activations in the second layer represent more complex
features, such as the shape of the cat’s head or the cat’s torso. The features that some of the
activations might learn are shown in Fig. 10.8. In general as you move along the layers of

143



Figure 10.8: The features learned by the activations in the first and second layers of the
NN.

the NN, the activations will represent more and more complex features. Since the features
that the activations represent depend on the problem at hand, the NN is thought of as
learning problem specific features, unlike the polynomial feature map φp which is fixed and
might contain irrelevant features. �

10.5 Softmax as a Neural Network
The careful reader may have noticed that so far we have compared all the functions we have
covered in previous chapters to the NN, except for the softmax function. The reason for
this is that softmax cannot be represented as a single layer NN. In this section we will show
that for this reason the softmax is often added as a post-processing step to the output of a
single layer NN.

In Section 9.2.1 we introduced the softmax function to predict a vector of probabilities.
The softmax function was applied to K different linear functions. To get a sense for why
the softmax function cannot be represented as a signle layer NN, consider the case where
K = 3. We would have 3 weight vectors w1,w2,w3 and the softmax function would be

σ(x>w1,x>w2,x>w3)

=
(
σ1(x>w1,x>w2,x>w3), σ2(x>w1,x>w2,x>w3), σ3(x>w1,x>w2,x>w3)

)>
.

If we try to represent the softmax function as a NN with one layer B = 1 we would need
d(1) = 3 neurons since the output is K = 3 dimensional. If we set the weight vectors as
w(1)

1 = w1,w(1)
2 = w2,w(1)

3 = w3, then the output of the NN would be

f(x) = a(1) =
(
h(1)(x>w1), h(1)(x>w2), h(1)(x>w3)

)>
.

This is shown in Fig. 10.9. Unfortunately, there is no way to set the activation function
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Figure 10.9: A NN attempting to represent the softmax function.

h(1) such that the output of the NN is the same as the softmax function. The problem
arises in the fact that each index of the output of the softmax function depends on all of
the linear functions, while in the NN each output activation can only depend on the input
feature vector x and the weights connecting to it.

One way to get around this is to add an extra post-processing step to the output of the
NN. In particular if we set the activation function h(1) to be the identity function, then the
output of the NN is

f(x) = a(1) =
(
x>w1,x>w2,x>w3

)>
.

Then if we apply the softmax function to the output of the NN, we get the same output as
the softmax function.

σ(f(x)) = σ
(
x>w1,x>w2,x>w3

)
.

Exercise 10.1: Let d = 2. Define a NN f that satisfies f(x) = x1 + x2. �

Exercise 10.2: Let d = 2. Define a NN f that satisfies f(x) = x1 − x2. �

Exercise 10.3: Let d = 2. Assume x1, x2 > 0. Define a NN f that satisfies f(x) = x1 ·x2.
�

Exercise 10.4: Let d = 2. Assume x1, x2 > 0. Define a NN f that satisfies f(x) = x1/x2.
�
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Chapter 11

Language Models

In this chapter we will study a topic that is currently very popular: generating text. We will
refer to a predictor or model that can generate text as a language model. Some examples
of what generating text can look like are:
Example 11.1:

Input: Once upon a time, in a land far, far away,

Output: there lived a wise old dragon who loved to read books.

�

Example 11.2:

Input: Why did the chicken cross the road?

Output: To get to the other side.

�

The second example should bring to mind how you might use ChatGPT, a language
model developed by OpenAI. In particular, if your input is a question, ChatGPT will
generate a reasonable answer. Although there are various ways to generate text, in this
chapter we will focus on a particular type of language model: the autoregressive language
model. Roughly speaking an autoregressive language model is a model that generates text
one word at a time and uses as input the original text plus the words it has already generated.
Since we will only focus on autoregressive language models in this chapter, and will refer to
them simply as language models.
Example 11.3: In Example 11.2, an autoregressive language model would generate the
text To get to the other side. as follows:

Input: Why did the chicken cross the road?

Output: To

Input: Why did the chicken cross the road? To

Output: get
...

Input: Why did the chicken cross the road? To get to the other side

Output: .

Input: Why did the chicken cross the road? To get to the other side.

Output: <EOS>
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Notice how the output at each step is used as part of the input for the next step. The text
<EOS> is called an “end of sequence token” and is used by the model to indicate that it has
finished generating text. �

In the above example you might have noticed that the model may need to output symbols
that are not words, such as a period or the end of sequence token. As such we will refer
to possible outputs of the model as tokens rather than words, and the set of all possible
tokens Y as the vocabulary. An example of a vocabulary could be the set that contains all
English words, punctuation marks, the end of sequence token <EOS>, and a padding token
<PAD> that is used to fill in the input sequence when it is shorter than the maximum length
the model can handle. Although the vocabulary can be quite large, it is finite and we will
denote its size as K = |Y|. Since there are finitely many tokens we could alternatively
represent them as integers in the set {1, 2, . . . ,K}. Using the integer representation will
occasionally be more convenient, so we will often change between the two representations.

As such, we can try to formally represent a language model as a function f : X → Y,
where Y is the vocabulary and X is the set of all possible sequences of tokens. Unfortunately,
if we try to use ERM to learn a good model, we will quickly run into two problems. The
first is that the domain of the model X is not continuous, which will make optimization
difficult. The second is that even if the domain was continuous, the output of the model is
discontinuous, since the model outputs discrete tokens, which will again make optimization
difficult.

11.1 Representing Tokens as Vectors
First, we will address the issue of the input being discontinuous. So far in the notes we have
always assumed that the input to the model is a feature vector in Rd+1. To make use of all
the tools we have developed so far, we will need a way to represent a sequence of tokens as
feature vector. The first step in this process is to notice that each token in a sequence of
token belongs to the same vocabulary Y. Thus, we can represent a sequence of tokens as a
tuple s ∈ Ya where a is the length of the sequence. Then, we can make use of what is called
an embedding function to represent each token as a vector in Rd′ . The embedding function
will be denoted as E : Y → Rd′ . Although there is a lot of details about how to pick a good
embedding function, in these notes we will assume that a good embedding function has
been given to us. In Section 11.1.1 we will discuss some properties of embedding functions
and how to intuitively think of tokens as vectors.

Now we need to represent a sequence of tokens s ∈ Ya as a feature vector. We can try
to first pass each token through the embedding function and then concatenate the resulting
vectors. The only issue with this approach is that the length of the sequence a can vary,
and we need a feature vector of fixed dimension d+ 1. As such, we will choose some fixed
length c ∈ {1, 2, . . .} called the context length. If the sequence is shorter than c, we will pad
it with the padding token <PAD>. If the sequence is longer than c, we will only keep the last
c tokens.
Example 11.4: Suppose that c = 3 and the input text is Why did, which contains two
tokens Why and did and can be equivilently represented as the tuple (Why, did) ∈ Y2.
However, we need to represent this as a tuple in Y3. We can do this by padding it with the
token <PAD> to get (<PAD>, Why, did) ∈ Y3. �
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Example 11.5: Suppose that c = 3 and the input text is Why did the chicken cross
the road?, which contains eight tokens and can be equivilently represented as the tuple
(Why, did, the, chicken, cross, the, road, ?) ∈ Y8. However, we need to represent this as a
tuple in Y3. We can do this by keeping only the last three tokens to get (the, road, ?) ∈ Y3.

�

Then, if we have a seuquence of tokens s ∈ Yc, we can represent it as a feature vec-
tor x ∈ Rd+1 by passing each token through the embedding function, concatenating the
resulting vectors and adding a bias term. This process can be represented by a concate-
nation embedding function Ē : Yc → Rd+1, where d = c · d′. We can visualize this in
Fig. 11.1, where the blue box represents the concatenation embedding function. The tokens
in the sequence are denoted as v1, . . . , vc and the corresponding embeddings are denoted as
e1, . . . , ec. The output of Ē(s) is a feature vector x ∈ Rd+1 as desired.

Figure 11.1: A concatenation embedding function.

Exercise 11.1: Suppose that s = (Why, did, the) and E(Why) = (1, 2)>, E(did) = (3, 4)>,
and E(the) = (5, 6)>. What is Ē(s)? �

11.1.1 Token Embeddings

In this section we will discuss some properties of embedding functions and how to intuitively
think of tokens as vectors. The first property that most embedding functions have is that
words that are similar in meaning should have similar embeddings. For instance, if you
compare the embeddings of the words big and large, you will find that they are quite
similar. Another property is that doing arithmetic with embeddings can give meaningful
results. Suppose that we have the embeddings of the words man and woman. If we subtract
E(woman) − E(man) we will get a vector that represents something like the concept of
femininity. If we add this vector to the embedding of the word king, we will get something
close to the embedding of the word queen. As one last example, suppose that we would like
to know the capital of France and we know that the capital of Italy is Rome. Then, if we
compute E(Rome) − E(Italy) + E(France) we will get something close to the embedding
of the word Paris. The examples described above are illistrated in Fig. 11.2. Since it is
difficult to visualize more than 2 dimensions we have assumed that d′ = 2; however, in
practice d′ is usually much larger.
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Figure 11.2: Some properties of token embeddings.

Exercise 11.2: Would you expect the embedding of the word great to be closer to the
embedding of the synonym good or the antonym bad? �

Exercise 11.3: Suppose that you have the embeddings of the words far, farthest, and
near. How would you use these embeddings to get an estimate of the embedding of the
word nearest? �

11.2 Predicting the Next Token
Next, we will address the issue of the output being discontinuous. To do this we will
make use of a strategy we have already discussed in Section 9.2 of first predicting the
probability of each token in the vocabulary, and then selecting the token with the highest
probability. Formally, we need to first get an estimate of the conditional pmf p(y|x) for
each y ∈ Y and x ∈ X and then select the token y that maximizes this probability. Getting
an estimate of p(y|x) can be throught of as a regression problem in the same way we have
seen Section 9.2.1. In particular, since the vocabulary Y is finite, then for a fixed x we can
represent p(y|x) as a vector y ∈ [0, 1]K where yk = p(y = k|x). Then, the new set of labels
becomes Yprob = [0, 1]K . A model that outputs a vector of probabilities y will be denoted
as fprob : X → Yprob and called a probability model.

In Section 9.2.1 we saw that one option for fprob is to use a softmax function that takes
as input K linear functions of the input x. We can generalize this further by passing the
features x through a neural network (NN) before applying the softmax function. The NN
will often use the identity activation function for the output layer h(B)(z) = z. If we let
fNN(x) = z(B) be the output of the NN, then fprob(x) = σ(z(B)). We can visualize this in
Fig. 11.3, where the blue box represents fprob.
Exercise 11.4: Suppose that the vocabulabry Y contains 100 tokens. How many neurons
does the output layer of fNN need to have, and will the sum of all the output neuron values
be equal to 1? �
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Figure 11.3: A NN with a softmax applied to the output.

11.3 Creating a Dataset
In Section 11.1 we discussed how to represent a sequence of tokens as a feature vector in
Rd+1. In Section 11.2 we chose to represent the probability model fprob : X → Yprob as
the softmax of the output of a NN. What we have not yet discussed is how to learn a good
probability model. To do this we can use ERM; however, we will first need a dataset. We
will assume that we have access to a long sequence of tokens s ∈ Yn, for example, the text
of many books concatenated together. In this section we will discuss how to use this data
to create a dataset that can be used learn a good probability model with ERM.

Since the probability model fprob is a function that takes as input a feature vector
x ∈ Rd+1 and outputs a probability vector y ∈ [0, 1]K , we will need to create a dataset
that contains feature-label pairs of the same type. First, we will need to split the se-
quence of tokens into input sequences si of length c and output tokens yi. Roughly
speaking, we can do this by using a sliding window of length c to create the input se-
quences and then take the next token as the output token. More formally, if we have a
sequence of tokens s = (v1, v2, . . . , vn+1), we can create the input-output pairs (si, yi) where
si = (vi−c+1, vi−c+2, . . . , vi) and yi = vi+1 for i ∈ {c, c+1 . . . , n}. To make sure we have some
data points where the input sequence is shorter than c, we will also create input-output pairs
where the input sequence is padded with the token <PAD>. In particular, for i ∈ {1, . . . , c−1}
we will create the input-output pairs (si, yi) where si = (<PAD>, . . . , <PAD>, v1, . . . , vi) ∈ Yc
and yi = vi+1.
Example 11.6: Suppose that c = 3 and the sequence of tokens is

(Why, did, the, chicken, cross, the, road, ?, <EOS>).
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Then, the input-output pairs would be:

(s1, y1) = ((<PAD>, <PAD>, Why), did),
(s2, y2) = ((<PAD>, Why, did), the),
(s3, y3) = ((Why, did, the), chicken),
(s4, y4) = ((did, the, chicken), cross),
(s5, y5) = ((the, chicken, cross), the),
(s6, y6) = ((chicken, cross, the), road),
(s7, y7) = ((cross, the, road), ?),
(s8, y8) = ((the, road, ?), <EOS>),

�

Exercise 11.5: Suppose that we have created the following input-output pairs from some
sequence of tokens:

(s1, y1) = ((<PAD>, <PAD>, <PAD>, <PAD>, Why), did),
(s2, y2) = ((<PAD>, <PAD>, <PAD>, Why, did), the),
(s3, y3) = ((<PAD>, <PAD>, Why, did, the), chicken),
(s4, y4) = ((<PAD>, Why, did, the, chicken), cross),
(s5, y5) = ((Why, did, the, chicken, cross), the),
(s6, y6) = ((did, the, chicken, cross, the), road),
(s7, y7) = ((the, chicken, cross, the, road), ?),
(s8, y8) = ((chicken, cross, the, road, ?), <EOS>),

What is the context length c and what was the original sequence of tokens? �

Then, to create the feature vectors we would pass each input sequence si through the
concatenation embedding function Ē : Yc → Rd+1 to get the feature vectors xi = Ē(si). To
create the label vectors we would pass each output token yi through the one-hot encoding
function one-hot : Y → [0, 1]K to get the label vectors yi = one-hot(yi). The one-hot encod-
ing function is defined as one-hot(y) = (y1, y2, . . . , yK) where yk = 1 if y = k and yk = 0 oth-
erwise. Finally, we would have a dataset of feature-label pairs D = ((x1,y1), . . . , (xn,yn))
that can be used to learn a good probability model with ERM.
Exercise 11.6: The only tokens you will encounter are Why, did, the, ?, <EOS>,
<PAD>. You represent each token by an integer as follows Why → 1, did → 2, the
→ 3, ? → 4, <EOS> → 5, and <PAD> → 6. Thus, the vocabulary can be either Y =
{1, 2, 3, 4, 5, 6}, or Y = {Why, did, the, ?, <EOS>, <PAD>} depending on the context. Sup-
pose that you are creating a dataset and the first input-output pair is (s1, y1) where
s1 = (<PAD>, <PAD>, <PAD>, <PAD>, did) and y1 = the. You use an embedding function
E : Y → Rd′ , where d′ = 2. What is the one-hot label vector y1 and what is the dimension
of the feature vector x1? �
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11.4 ERM for Language Models
Given the dataset D we created in the previous section what is left to define is the function
class F and the loss function `. The function class F will obviously be the set of all functions
of the same form as fprob. Formally,

F = {f |f : Rd+1 → [0, 1]K where f = σ(fNN(x)) and fNN is a NN with a fixed architecture}.

We will pick the multiclass cross-entropy loss (discussed in Section 9.2.1) as the loss function,
since the task of predicting the next token is a multiclass classification problem. Then, the
ERM learner is

A(D) = f̂prob = argmin
f∈F

L̂(f).

As discussed in Section 10.3, since each fNN is defined by its weight matrices, the above
minimization can be converted to a minimization over the weight matrices. Solving this
minimization problem can then be done using gradient descent. We will again leave out the
details of computing the gradients in these notes.

Finally, we can define our language model which takes as input a sequence of tokens
s ∈ Yc and outputs the next token. First, we would pass the input sequence through the
concatenation embedding function Ē : Yc → Rd+1 to get the feature vector x = Ē(s).
Then, we would pass the feature vector through the learned probability model f̂prob to get
the probability vector ŷ = f̂prob(x). Finally, we would select the token with the highest
probability as the next token.
Exercise 11.7: Based on the above paragraph, if the input sequence is s ∈ Yc, is the
output of the language model

argmax
k∈Y

ŷk where ŷ = f̂prob(Ē(s))?

�
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Chapter 12

Exercise Solutions

Chapter 2 Solutions
Exercise 2.15
This can be solved using the chain rule. Let u(x) = −x3. Then we can rewrite f(x) as
f(x) = exp(u(x)). We know that du

dx = −3x2. Thus, using the chain rule, we get:
df

dx
(x) = df

du

du

dx
(x) = exp(−x3)(−3x2) = −3x2exp(−x3).

Chapter 3 Solutions
Exercise 3.2

EX [EY [Y |X]] =
∑
x∈X

p(x)
∑
y∈Y

yp(y|x)

=
∑
x∈X

∑
y∈Y

yp(y|x)p(x)

=
∑
x∈X

∑
y∈Y

yp(x, y)

=
∑
y∈Y

y
∑
x∈X

p(x, y)

=
∑
y∈Y

yp(y)

= E[Y ]

Exercise 3.3

1. X = {1, 2, 3, 4, 5, 6}

2. Let X ∈ X be the random variable representing the outcome of the die roll. Since it
is a fair die X has a discrete uniform distribution, which implies its pmf is p(x) = 1

6
for x ∈ X . Getting an even number can be represented as the event E = {2, 4, 6}.
The probability of observing an even number is then

P(E) =
∑
x∈E

p(x) = p(2) + p(4) + p(6) = 1
6 + 1

6 + 1
6 = 1

2

3. Let event E = {3}, then the event of not observing 3 is Ec and its probability is

P(X ∈ Ec) = 1− P(X ∈ E) = 1− 1
6 = 5

6
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4. Let event E = {3, 4}, then P(X ∈ E) = p(3) + p(4) = 2/6. The probability of not
observing 3 or 4 is P(X ∈ Ec) = 1− P(X ∈ E) = 4/6

Exercise 3.4
In a Bernoulli trial, if the probability of success is α, then the probability of failure is 1−α
which will be 0.3.
Exercise 3.5

1.

P(X ≤ 4.5) =
ˆ 4.5

−5
p(x)dx

=
ˆ 4.5

−5

1
b− a

dx

=
ˆ 4.5

−5

1
10dx

= 1
10(4.5− (−5))

= 0.95

2.

P(−3 ≤ X ≤ 3) =
ˆ 3

−3
p(x)dx

=
ˆ 3

−3

1
10dx

= 1
10(6)

= 0.6

Exercise 3.6

1. Since ∑x∈{1,2,3},y∈{1,2,3} p(x, y) = 1, we expand and see that∑
x∈{1,2,3},y∈{1,2,3}

p(x, y) = 15/18 + c = 1.

Thus. c must be 3
18 for this to hold.

2. p(x = 3) = ∑
y∈{1,2,3} p(x = 3, y) = 5

18

3. p(y = 1) = ∑
x∈{1,2,3} p(x, y = 1) = 5

18

Exercise 3.7

1. The outcome space for X is X = [0, 1] and the outcome space for Y is Y = [1,∞)

2. The joint outcome space for the new random variable Z = (X,Y ) is Z = [0, 1]×[1,∞).
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3.

1 =
ˆ
X

ˆ
Y
p(x, y)dydx

=
ˆ 1

0

ˆ ∞
1

cx2

y2 dydx

=
ˆ 1

0

(
−cx

2

y

) ∣∣∣∣∞
1
dx

=
ˆ 1

0
cx2dx

= cx3

3

∣∣∣∣1
0

= c

3 − 0 = c

3
=⇒ c = 3

4. Notice that p(y|x = 0.5) = p(x=0.5,y)
p(x=0.5) and that p(x = 0.5, y) = 3(0.5)2/y2 = 0.75/y2.

Now we just need p(x = 0.5).

p(x = 0.5) =
ˆ
Y
p(x = 0.5, y)dy

=
ˆ
Y

0.75
y2 dy

= 0.75
ˆ ∞

1
y−2dy

= 0.75(−y−1)
∣∣∣∞
1

= 0.75(0− (−1−1)) = 0.75

Therefore p(y|x = 0.5) = 1/y2.

Chapter 6 Solutions
Exercise 6.1
No you can not be certain. We know when ηt → 0 that w(t) → w∗, but we do not know
if w(t) = w∗ for any specific t. Also, since we are using a fixed step size, it does not even
satisfy that ηt → 0.
Exercise 6.2
If you set λ = 0, then the step size becomes ηt = η exp(−λt) = η exp(0) = η for all t ∈ N,
which is a constant step size.
Exercise 6.3
By following the same steps as for the squared loss it can be shown that the BGD update
rule with this new loss would be:

w(t+1) = w(t) − η(t) 4
n

n∑
i=1

(x>i w(t) − yi)3xi. (12.1)
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In the 1-dimensional case, the first derivative of L̂(w) becomes:

d

dw
L̂(w) = 4

n

n∑
i=1

(x>i w − yi)3xi (12.2)

To check convexity we take the second derivative:

d2

dw2 L̂(w) = 12
n

n∑
i=1

(x>i w − yi)2x2
i (12.3)

Since this is always positive, L̂(w) is convex.
Exercise 6.4
See algorithm 5 for the algorithm.

Algorithm 5: BGD Linear Regression Learner (with an exponential decaying step
size)

1: input: D = ((x1, y1), . . . , (xn, yn)), step size parameters η0, λ, number of epochs T
2: w← random vector in Rd+1

3: for t = 1, . . . , T do
4: ∇L̂(w)← 2

n

∑n
i=1(x>i w− yi)xi

5: η ← η0 exp(−λ(t− 1))
6: w← w− η∇L̂(w)
7: return f̂(x) = xTw

Exercise 6.5

L̂M+1(w) = 1
n−Mb

n−Mb∑
i=Mb+1

(x>i w− yi)2.

Exercise 6.6
It is not certain that f3 ∈ F2 because f3 is a degree 3 polynomial, and F2 is the set of all
degree 2 polynomials. For example if f3(x) = x3, then f3 /∈ F2. However, it is certain that
f3 ∈ F4 because F4 is the set of all degree 4 polynomials, and f3 is a degree 3 polynomial.
Exercise 6.7
Since d = 3, p = 2, we have p̄ =

(3+2
2
)

= 10. Let x = (x0 = 1, x1, x2, x3)> ∈ Rd+1 = R4.
Then φ2(x) = (1, x1, x2, x3, x

2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3)> ∈ R10.

Exercise 6.8
Yes F̄1 ⊂ F̄2. To see this notice that any function f̄1 ∈ F1 can be written as exp(φ1(x)>w) =
exp(x>w) for some w = (w0, . . . , wd) ∈ Rd+1. Also, x>w = φ2(x)>w′ for some w′ =
(w0, . . . , wd, 0, . . . , 0) ∈ Rp̄ where p̄ =

(d+2
2
)
. Thus, f̄1 ∈ F2. Since f̄1 was arbitrary, this

shows that F̄1 ⊂ F̄2.
F̄1 6⊂ F1. To see this, consider the function f(x) = exp(x) ∈ F̄1. However, f(x) /∈ F1

because f(x) is not a polynomial. Similarly, F1 6⊂ F̄1 because there are polynomials in F1
that are not in F̄1.

It is not true that minf∈F̄1
L̂(f) ≤ minf∈F̄2

L̂(f). This follows immediately from the
fact that F̄1 ⊂ F̄2, thus there might be a f̄2 ∈ F̄2 that has a lower value of L̂ than any
f̄1 ∈ F̄1. However, it is true that minf∈F̄1

L̂(f) ≥ minf∈F2 L̂(f).
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Exercise 6.9
With gradient descent we can not be certain how good our solution will be after T iterations.
So we can not be certain that L̂1(w(100)

1 ) ≥ L̂2(w(1000)
2 ). However, we can be pretty confident

that it is true since F1 ⊂ F2, and we are told that the number of iterations that gradient
descent is run is likely enough to find a good approximation of the minimizer.
Exercise 6.10
To construct a degree 3 polynomial feature map φ3(x), we need to construct all possible
triples of the input features x0, x1, . . . , xd. We follow the example for the degree 2 case
(algorithm 4), but now add an extra nested loop to consider all possible triples of the input
features, instead of just pairs. The solution is given in algorithm 6.
Algorithm 6: Degree 3 Polynomial Feature Map

1: input: feature vector x = (x0 = 1, x1, . . . , xd)> ∈ Rd+1

2: p̄← (d+ 1)(d+ 2)(d+ 3)/6
3: ϕ← (ϕ0 = 0, ϕ1 = 0, . . . , ϕp̄−1 = 0)> ∈ Rp̄
4: j ← 0
5: for k = 0, . . . , d do
6: for l = k, . . . , d do
7: for q = l, . . . , d do
8: ϕj = xk · xl · xq
9: j = j + 1

10: return ϕ

Chapter 8 Solutions
Exercise 8.1
Since log is a monotonic function, we can minimize the negative log-likelihood instead of the
likelihood. So now we have to minimize− log∏n

i=1 α
zi(1−α)1−zi = −∑n

i=1 [zi logα+ (1− zi) log(1− α)].
Taking derivative with respect to α and setting it to zero, we get −∑n

i=1

[
zi
α −

1−zi
1−α

]
= 0.

Solving for α we get α = 1
n

∑n
i=1 zi, which is the sample mean of the data.

Exercise 8.2
The negative log-likelihood for N (0, σ2) is

n∑
i=1

[
1
2 log(2πσ2) + (zi − 0)2

2σ2

]
= n

2 log(2πσ2) + 1
2σ2

n∑
i=1

z2
i .

Taking derivative w.r.t σ and setting it to 0:

n

2
4πσ
2πσ2 −

1
σ3

n∑
i=1

z2
i = 0 =⇒ σ2 = 1

n

n∑
i=1

z2
i .

Exercise 8.3
The negative log-likelihood for Poisson(λ) is

−
n∑
i=1

log e
−λλzi

zi!
= nλ−

n∑
i=1

zi log λ+
n∑
i=1

log zi! .
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Taking the derivative w.r.t λ of the above expression and setting it to 0, we get

n− 1
λ

n∑
i=1

zi = 0 =⇒ λ = 1
n

n∑
i=1

zi.

Exercise 8.4
The likelihood for Poisson(λ) is

p(D|λ) =
n∏
i=1

λzi
zi!
e−λ = λ

∑n

i=1 zi

z1! . . . zn!e
−nλ.

Then the posterior with a Gamma prior (with paratmeters k = 3 and θ = 1) is proportional
to (removing terms that do not depend on λ)

p(λ|D) ∝ p(D|λ)p(λ) = λ
∑n

i=1 zie−nλλ2e−λ = λ
∑n

i=1 zi+2e−(n+1)λ.

Taking the negative log of the above expression, we get−(∑n
i=1 zi+2) log λ+(n+1)λ. Taking

the derivative w.r.t λ and setting it to 0, we get −
∑n

i=1 zi+2
λ +(n+1) = 0 =⇒ λ =

∑n

i=1 zi+2
n+1 .

Chapter 9 Solutions
Exercise 9.1
For all epochs T ∈ {1, . . . , 200} it holds that

L(f (T )
bin ) ≥ L(f∗) ≥ L(fBayes),

by the definitions of f (T )
bin , f

∗, fBayes. The fact that the estimated loss using binary corss-
entropy is going down as T increases, implies that f̂ (T ) is getting closer to f̂ERM, and is not
important for this question. How the value of L̂(f (T )

bin ) compares to L(f (T )
bin ), L(f∗), L(fBayes)

can not be determined from the information we are given, since L̂ and L are different
functions.
Exercise 9.2

1. Yes, to both. Since σ(φp(x)>wMLE, p) = 0.5 is equivalent to φp(x)>wMLE, p = 0.

2. The left plot is p = 1 since the right plot must be p = 5 since the decision boundary
is a curve and when p = 1 the equation x>wMLE, 1 = 0 defines a line.

3. In both plots the green region represents when the binary classification predictor out-
puts 1 and the red region represents when the binary classification predictor outputs
0. We know this since there are significantly more green points in the green region
and more red points in the red regions, which implies that fMLE, p(x) ≥ 0.5 in the
green region and fMLE, p(x) < 0.5 in the red region.

4. By changing the threshold to 0.1 the features x for which 0.5 > fMLE, p(x) ≥ 0.1
would now become a green region as well. This means the green region would be at
least as large as it is now, and the red would be at most as large as it is now.
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5. Notice that the zero-one loss is 1 if fBin, p(x) 6= y and 0 otherwise. Thus, the estimated
loss is the proportion of points for which fBin, p(x) 6= y. If you count the number of
add up the number of red points in the green region and the number of green points
in the red region in each plot, you will see that the number is smaller for p = 5. This
means that the estimated loss is smaller for p = 5.

6. p = 5 is more likely to overfit the dataset D. This is because the decision boundary
for p = 5 is more complex than the decision boundary for p = 1. Since the decision
boundary for p = 5 is more complex, it is more likely to fit the noise in the dataset D.

Exercise 9.3

1. The condition that holds when all three decision boundaries intersect is σ0 = σ1 = σ2.

2. The equation of the line representing the decision boundary for classes 0 and 1 is
x>wMLE,0 = x>wMLE,1, since this implies that σ0 = σ1. This line is only plotted for
the values of x where σ0 = σ1 ≥ σ2.

3. The decision boundary for some classes y 6= k would now be represented by φp(x)>wMLE,y =
φp(x)>wMLE,k. Since p > 2 the decision boundaries would be curves, unless a line is
a better fit for the data, which does not seem likely based on the plot.

Chapter 10 Solutions
Exercise 10.1
The neural network has B = 1 layers, d(1) = 1 output neuron. The activation function
is h(1)(z) = z. The weights are w(1)

1 = (0, 1, 1)>. Then, the output activation is a(1)
1 =

h(1)(x>w(1)
1 ) = h(1)(x0 · 0 + x1 · 1 + x2 · 1) = x1 + x2.

Exercise 10.2
The neural network has B = 1 layers, d(1) = 1 output neuron. The activation function
is h(1)(z) = z. The weights are w(1)

1 = (0, 1,−1)>. Then, the output activation is a(1)
1 =

h(1)(x>w(1)
1 ) = h(1)(x0 · 0 + x1 · 1 + x2 · 1) = x1 + x2.

Exercise 10.3
Notice that x1 · x2 = exp(log(x1 · x2)) = exp(log(x1) + log(x2)). We use this insight to
design the network. The neural network has B = 2 layers, d(1) = 2, d(2) = 1 neurons.
The activation functions are h(1)(z) = log(x), h(2)(z) = exp(x). The weights are w(1)

1 =
(0, 1, 0)>,w(1)

2 = (0, 0, 1)>,w(2)
1 = (0, 1, 1)>. Then, the output activations are

a
(1)
1 = h(1)(x>w(1)

1 ) = h(1)(x0 · 0 + x1 · 1 + x2 · 0) = log(x1),

a
(1)
2 = h(1)(x>w(1)

2 ) = log(x2),

a
(2)
1 = h(2)(x>w(2)

1 ) = exp(log(x1) + log(x2)) = x1 · x2.

Alternatively, we could have noticed that x1 ·x2 = 1
2(x1 +x2)2− 1

2x
2
1− 1

2x
2
2, and designed

the network accordingly.
Exercise 10.4
Notice that x1/x2 = exp(log(x1/x2)) = exp(log(x1) − log(x2)). We use this insight to
design the network. The neural network has B = 2 layers, d(1) = 2, d(2) = 1 neurons.
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The activation functions are h(1)(z) = log(x), h(2)(z) = exp(x). The weights are w(1)
1 =

(0, 1, 0)>,w(1)
2 = (0, 0, 1)>,w(2)

1 = (0, 1,−1)>. Then, the output activations are

a
(1)
1 = h(1)(x>w(1)

1 ) = h(1)(x1),

a
(1)
2 = h(1)(x>w(1)

2 ) = h(1)(x2),

a
(2)
1 = h(2)(x>w(2)

1 ) = exp(log(x1)− log(x2)) = x1/x2.

Chapter 11 Solutions
Exercise 11.1
Since Ē(s) concatenates the embeddings of the tokens in s and adds a bias term, we have

Ē(s) = (1, 1, 2, 3, 4, 5, 6)>.

Exercise 11.2
The embedding of the word great would be closer to the embedding of the word good
than to the embedding of the word bad, since great and good are similar in meaning by
definition of being synonyms.
Exercise 11.3
The vector E(farthest)−E(far) would represent something like the concept of being the
most of something, then if we add this to the embedding of near, we would get something
close to the embedding of nearest. In other words E(nearest) ≈ E(near)+E(farthest)−
E(far).
Exercise 11.4
The output layer will need to have 100 ouput neurons, one for each token in the vocabulary.
The sum of all the output neuron values is not equal to 1 in general since the softmax
function has not been applied to the output yet.
Exercise 11.5
The context length is 5 since s1, . . . , s8 all have 5 tokens each. The original sequence was
(Why, did, the, chicken, cross, the, road, ?, <EOS>) due to the definition of the input-output
pairs (si, yi).
Exercise 11.6
The one-hot label vector y1 = (0, 0, 1, 0, 0, 0)>, since K = 6 and the is represented as the
number 3. The dimension of x1 is = c · d′ + 1 = 5 · 2 + 1 = 11.
Exercise 11.7
Yes.

Appendix A Solutions
Exercise A.1
Consider an event A ∈ E . By property 1 of the event space, Ac ∈ E . Since the intersection
A ∩Ac = ∅, and we assume that P satisfies the axioms of probability, then by axiom 2 we
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have

P(A ∪Ac) = P(A) + P(Ac)
P(Ω) = P(A) + P(Ac)

1 = P(A) + P(Ac)
P(A) = 1− P(Ac)

Exercise A.2
By property 3, we know E 6= ∅. Thus there is some event A ∈ E . By property 1, we know
that Ac ∈ E . By property 2 we then know that A∪Ac = Ω ∈ E . By property 1, Ωc = ∅ ∈ E .
Exercise A.3
The first axiom is straightforward to prove by combining the two statements we are given.

P(X ) =
∑
x∈X

p(x) (by second statement)

= 1 (by first statement)

To prove the second axiom, first suppose that A1, A2, . . . ∈ E , Ai ∩Aj = ∅ ∀i, j.

P(A1, A2, ... ∈ E) =
∑

x∈∪iAi
p(x) (by second statement)

=
∑
i

∑
x∈Ai

p(x) (because Ai ∩Aj = ∅)

=
∑
i

P(Ai) (be second statement)
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Appendix A

Extra Details on Probabilities

In this section, we more carefully go through probabilities and random variables. The main
set of notes covers only what is strictly necessary. But, the definitions for probabilities are
actually quite simple, so simple in fact that we can build them up from scratch. We do that
here for the interested reader.

We can build up rules of probability, based on an elegantly simple set of axioms called
the axioms of probability. Let the sample space (Ω) be a non-empty set of outcomes and
the event space (σ) be a non-empty set of subsets of Ω. For example, Ω = {1, 2, 3} and one
possible event is E = {1, 3} ∈ σ, where the event is that a 1 or a 3 is observed. Another
possible event is E = {2}, where the event is that a 2 is observed. The event space σ must
satisfy the following properties1

1. E ∈ σ ⇒ Ec ∈ σ (where Ec is the complement of the event E : Ec = Ω\E)

2. E1, E2, . . . ∈ σ ⇒
⋃∞
i=1 Ei ∈ σ

3. σ is non-empty.

If σ satisfies these three properties, then (Ω, σ) is said to be a measurable space. The symbol
∅ means the empty set. Note that these three conditions imply that ∅ ∈ σ and Ω ∈ σ.2

Now we can define the axioms of probability, which make it more clear why these two
conditions are needed for our event space to define meaningful probabilities over events. A
function P : σ → [0, 1] satisfies the axioms of probability if

1. P(Ω) = 1

2. E1, E2, . . . ∈ σ, Ei ∩ Ej = ∅ ∀i, j ⇒ P(∪∞i=1Ei) = ∑∞
i=1 P(Ei)

is called a probability measure or a probability distribution. The tuple (Ω, σ,P) is called the
probability space.

The second condition means that the probability of the union of disjoint sets equals
the sum of their probabilities. This is an intuitive requirement. In it simplest form, this
requirement states that if two events E1, E2 are disjoint, then P(E1∪E2) = P(E1)+P(E2): the
probability of either event occurring is the sum of their probabilities, because there is no
overlap in the outcomes in the events. More generally, a finite union should also satisfy this

1Such a set is usually called a sigma algebra or sigma field. This terminology feels daunting and is only
due to historical naming conventions. Because the sigma algebra is simply the set of events to which we can
assign probabilities (measure), we will use this more clear name. If you would like to learn more about this
topic, it is more formally discussed in a branch of mathematics called Measure Theory.

2In fact, it is common to use the condition that Ω ∈ σ rather than using the condition that σ is non-empty.
However, it is equivalent and requiring that we have a non-empty event space is a more obvious condition
to include.
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equality, namely that for any E1, E2, . . . EN ∈ σ, Ei∩Ej = ∅ ∀i, j ⇒ P(∪Ni=1Ei) = ∑N
i=1 P(Ei).

The above condition requires this equality for the union of infinitely many events, and
implies that P satisfies this condition for finitely many sets. This is because all EN+j for
j ≥ 1 can be set to the empty set ∅, where Ei ∩∅ = ∅ and ∅ ∩∅ = ∅.

The beauty of these axioms lies in their compactness and elegance. Many useful expres-
sions can be derived from the axioms of probability. For example, it is straightforward to
show that P(Ec) = 1−P(E). This makes it more clear why we required that if an event is in
the event space, then its complement should also be in the event space: if we can measure
the probability of an event, then we know that the probability of that event not occurring
is 1 minus that probability. Another property we can infer is that we always have Ω,∅ ∈ σ,
where ∅ corresponds to the event where nothing occurs—which must have zero probability.
Exercise A.1: Show that for any event E ∈ σ, P(Ec) = 1−P(E). Assume that P satisfies
the axioms of probability. �

Exercise A.2: Show that the above three conditions on σ imply that ∅ ∈ σ and Ω ∈ σ.
�

We can now introduce random variables, and from here on will deal strictly with random
variables. A random variable lets us more rigorously define transformations of probability
spaces; once we execute that transformation, we can forget about the underlying probability
space and can focus on the events and distribution only on the random variable. This is in
fact what you do naturally when defining probabilities over variables, without needing to
formalize it mathematically. Of course, here we will formalize it.

Consider again the dice example, where now instead you might want to know: what
is the probability of seeing a low number (1-3) or a high number (4-6)? We can define a
new probability space with X = {low,high}, σX = {∅, {low}, {high},X} and PX({low}) =
1/2 = PX({high}). The transformation function X : Ω→ X is defined as

X(ω) def=
{
low if ω ∈ {1, 2, 3}
high if ω ∈ {4, 5, 6}

The distribution PX is immediately determined from this transformation. For example,
PX({low}) = P({ω : X(ω) = low}),3 because the underlying probability space indicates the
likelihood of seeing a 1, 2 or 3. Now we can answer questions about the probability of seeing
a low number or a higher number.

This function X is called a random variable.4 The utility of this terminology is that
we move from talking about probabilities of sets—which can be cumbersome—to writ-
ing boolean statements. For example, we write PX(X = x) or PX(X ∈ E), rather than
P({ω : X(ω) = x}) or P({ω : X(ω) ∈ E}). For correctness, we can remember that it is a
function defined on a more complex underlying probability space. But, in practice, we can
start thinking directly in terms of the random variable X and the associated probabilities.

3You can read {ω : X(ω) = low} as “The event where the outcome was low” and more explicitly as “The
set of outcomes where the outcome was low”. You can read this whole expression P({ω : X(ω) = low}) as
“The probability of the event where the outcome was low”.

4This terminology might be slightly confusing consider X is a function, so it is neither random, nor a
variable. But, we end up using X as if its a variable that can take random outcomes, by writing statements
like X = x. In this sense, the terminology is reasonable.
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Similarly, even for the dice role, we can acknowledge that there is a more complex underlying
probability space, defined by the dynamics of the dice. When considering only the proba-
bilities of discrete outcomes from 1-6, we have already implicitly applied a transformation
on top of probabilities of the physical system.

Once we have a random variable, it defines a valid probability space (X , σX ,PX). There-
fore, all the same rules of probability apply, the same understanding of how to define dis-
tributions, etc. In fact, we can always define a random variable X that corresponds to no
transformation, to obtain the original probability space. For this reason, we can move for-
ward assuming we are always dealing with random variables, without losing any generality.
We will drop the subscripts, and consider (X , σ,P) to be defined for X. To define P, we can
use the definitions in Section 3.2.
Exercise A.3: Recall that for a given pmf p, we defined the probability of any event
E ∈ σ as

P(E) def=
∑
x∈E

p(x).

Show that this P satisfies the axioms of probability. �
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