Midterm details:

- 25 multiple choice (select all that apply)
 questions using scantron (Bring a pencil!!)
- Covers up to (and including) to day lecture up to (and including) sec 6.2 in the course notes
- Formula sheet will be provided (no cheat sheet) will post tonight
- You can bring a calculator
- Similar to assignment questions and examples in course notes
 - We will use lecture au Thursday to do a review session for the midlom exam.

=> Our goal (from supervised learning Lecture)

Defining A(D): Empirical Risk Minimization (ERM)

Estimation:

Use D to estimate L(f) for all fEFC(flf: x>3)

call the estimate L(f)

Optimization:

pick f to be the fEF that minimizes $\hat{L}(f)$ Function class

Optimization

finding the best solution from a set of possible solutions

Usually this means finding the minimum or maximum value of some function

we will care about:

min g(w) wEW minimum value of y(w) over all wEW

or w*= arginin g(w)

the wEW that achieves
the minimum value of g(w)

min g(w) = g(w*)

w* is a "minimizer"

 E_{\times} : $g(w) = V^2$

Note: There is a relationship between minimizing and maximizing

How do we solve minimization problems?

Cases:

1. If Wis discrete

2. If Wis continuous

Additional assumptions:

Cases: 1.

2.

Twice doffentiable:

Convex:

$$E^{\times}$$
: $g(w)=w^2$, $W=[1,2]=[a,b]$

$$Ex: g(w) = w^3, W = R$$

$$E_{x}$$
: $g(\vec{\omega}) = g(w_1, w_2) = w_1^2 + w_2^2$,

$$g(\mathbf{w}) = w_1^2 + w_2^2$$

Finding a good predictor (Linear Regression)
Optimization step of ERM