Midterm Review

CMPUT 267: Basics of Machine Learning



Announcements/Comments

* A few updates are being made to the assignment to make it clearer, to be
released tonight.

* |[f you have already started, do not worry! It does not change the assignment
N any way, It jJust adds clarity.

 How was the practice midterm? It is longer than the quiz because (a) you
are more used to this now and (b) you do not have to type.




Midterm Detalls

 [he content is from Chapters 1 - 7

o Chapter 7 is Introduction to Prediction problems

 Chapter 8 is Linear Regression. Exam does not cover linear regression
 [he exam only covers what iIs In the notes

* The focus is Chapters 4-7, but Chapter 1-3 are important background



Very brief summary of Ch 1-3

+ Probability

e Estimators



Probability

Deflne a random variable

Define joint and conditional probabilities for continuous and discrete
random variables

Define probability mass functions and probability density functions
Define independence and conditional independence
Define expectations for continuous and discrete random variables

Define variance for continuous and discrete random variables



Probabllity (2)

 Represent a problem probabillistically
* e.g., how likely was the outcome?
 Use a provided distribution
* | will always remind you of the density expression for a given distribution

 Apply Bayes' Rule to manipulate probabillities



Estimators

Define estimator

Define bias

Demonstrate that an estimator is/is not biased
Derive an expression for the variance of an estimator
Define consistency

Demonstrate that an estimator is/is not consistent

Justify when the use of a biased estimator is preferable



Poll Question: When is the use of a
pblased estimator preferable’?

e 1. Itis always better because it biases towards the true solution
e 2. If the bias reduces the mean-squared error by reducing the variance
e 3. If the bias reduces the mean-squared error by reducing the variance

e 4, I|tis rarely justifiable

Answer: 2



Estimators (2)

Apply concentration inequalities to derive confidence bounds
Define sample complexity
Apply concentration inequalities to derive sample complexity bounds

Explain when a given concentration inequality can/cannot be used



Optimization

* Represent a problem as an optimization problem

e Solve a discrete problem by iterating over options and picking the one with
the minimum value according to the objective

e Solve a continuous optimization problem by finding stationary points

Poll: What is a stationary point?



Poll Question: The following are true
about stationary points

* 1. A stationary point is the global minimum of a function
e 2. A stationary point Is a point where the gradient Is zero

e 3. Aglobal minimum is a stationary point, but a stationary point may not be
a global minimum

e 4. If we find a stationary point, then we have found the minimum of our
function

5. We can use the second derivative test to identity the type of stationary
point we have

Answer: 2, 3 and 5



Optimization

Represent a problem as an optimization problem

Solve an analytic optimization problem by finding stationary points
Define first-order gradient descent

Define second-order gradient descent

Define step size and adaptive step size

Explain the role and importance of step sizes in first-order gradient descent

Apply gradient descent to numerically find local optima



EXercise

. Imagine c(w) = %(xw — y)*

« \What is the first-order update, assuming we are currently at point w,”?

* |.e., the gradient descent update tells us how to modify our current point
to descend on our surface c.

Answer: w,, | < w, — 1n,c'(w,) for some stepsize , > 0

c'(w) = (xw —y)x sowehavethat. w,_ | < w, —n(xw, — y)x



EXercise

Imagine c(w) = %(xw — y)*

What is the first-order update, assuming we are currently at point w,”

* |.e., the gradient descent update tells us how to modify our current point
to descend on our surface c.

What if instead we did w,, ; < w, + 1,c'(w,). What would happen?

c'(wy)

The second-order update is w,, | <= W, — . Why might this update

c’'(w,)
e preferable to the first-order? (poll)



Poll Question: Why might the
second-order update be preferable?

e 1. It Is easler to compute than the first-order one.
e 2. It tells us how to pick a good stepsize.
* 3. I'he second-order update is more likely to get stuck at a saddlepoint

4. The first-order update might get stuck in local minimum, but not the
second-order update

Answer: 2



Parameter estimation

* Formalize a problem as a parameter estimation problem

* e.g., formalize
P0oIsSson distrib

1]

I

odell
1on,

using

ng commute times as parameter estimation for a

aximum likelihood

 Describe the differences between MAP, MLE, and Bayesian
parameter estimation

. MAP max p(@| <) versus MLE max p(& | 6)
0

0

» Bayesian learns p(0| 9), reasons about plausible parameters

* Define a conjugate prior



The Likellhood lerm and the Prior

* Likelihood: * Prior:
p(D|w) =1II'_ p(x; | w) p(w | 6,) for pdf or pmf

l

. arameters @
* e.g., Poisson D 0

wiexp(—w) e e.g., conjugate prior for
X! Poisson is Gamma with
parameters 6, = (a, b)

wa L exp(—w/b)

b (a)

px;|w) =

pw|6,) =



The Likellhood lerm and the Prior

o Prinr:
o Likelihood: O

p(D|w) =ITL p(x;|w) p(w | 6,) for pdf or pmtf
=1
parameters 6’0

* e.9g., Poisson

wi exp(—w) * e.g., conjugate prior for
plx;|w) = Y Poisson is Gamma with
a parameters 6, = (a, b)
w6 =1 exp(—w/b)
o - M W =
MLE: maximize P 0 bl (a)

p(D|w) =1T"_, p(x; | w)

e MAP: maximize
p(D | w)p(w|6y) = pw|O)IT_ p(x; | w)



The Likellhood lerm and the Prior

MLE: maximize e Prior:
p(Z|w) = 1l_p(x;|w) p(w | 6,) for pdf or pmf
MAP: maximize parameters 0,

p(Z |[w)p(w|6y) = pw|O)IT_, p(x; | w)

Bayesian: obtain posterior p(w | D)

* e.g., conjugate prior for
Poisson iIs Gamma with

parameters 6, = (a, b)

e.g., If Poisson likelihood with conjugate prior a—1 exp(—w/b)
Gamma with prior parameters 6, = (a, b), then pw| 6, =
posterior is Gamma with €, = (a,,, b,)) where bel(a)

n

1
n+1/b

an=a+2xiandbn=
i=1



Gamma Prior and Posterior

. Fora:SanoIIo:1,vvehavep(w)=lw2

S exp(—w) because I'(3) = 2

- For2 =1{2,5,9,5,4,8} we have in = 33
i=1

= 1/7

a =a+ ) x;=36and b, =
w1 exp(—w/b,) B w3 exp(—7w)

. PWID) = 7-361°(36)



Gamma Prior and Posterior

. Fora=3andb =1, wehave p(w) = %wz exp(—w)asI'(k) =(k—1)!

w1 exp(—w/b,) B w2 exp(—7w)

c P = 7-361°(36)

(Red)




Poll Question: Why is MAP useful, namely why is it useful
to include a prior over the weights” (Select all that apply)

1. It incorporates bias to reduce the variance
e 2. The prior makes our solution closer to the true solution
e 3. It lets us reason about uncertainty In our parameters

e 4, [|tlet's us incorporate expert knowledge about plausible weight values

Answer: 1, 4



Formalizing Prediction

Supervised learning problem: Learn a predictor f : & — % from a
dataset D = {(Xl-, yi)}r,l 1
] =

» X is the set of observations, and % is the set of targets

Classification problems have discrete, unordered targets
Regression problems have continuous targets

Predictor performance is measured by the expected cost(y, y) of
predicting y when the true value is y

An optimal predictor for a given distribution minimizes the expected cost



Prediction Concepts

Describe the differences between regression and classification
Derive the optimal classification predictor for a given cost

Derive the optimal regression predictor for a given cost

Understand that the optimal predictor is different depending on the cost

Describe the difference between irreducible and reducible error

 Even an optimal predictor has some irreducible error.
Suboptimal predictors have additional, reducible error

(O] = F [(f(X) —f*(X))zl - [(f*(X) - Y>2]

Reducible error lrreducible error



s Cost the Same as our Objective c?

* We gave this a different name to indicate it might not be

 The Cost is the penalty we incur for inaccuracy in our predictions
 We parameterize our function or distribution with parameters w

Our objective to find w has typically been the negative log likelihood
Example: we might learn p(y | X, w) using ¢(w) = — In p(Z | w)

For the 0-1 cost, we evaluate the predictor f(x) = arg max p(y | X, W)
y



Any Questions”

e Switch now to going over the practice midterm



