
Midterm Review

CMPUT 267: Basics of Machine Learning 
 

Textbook Ch.1 - 7



Announcements/Comments

• A few updates are being made to the assignment to make it clearer, to be 
released tonight. 


• If you have already started, do not worry! It does not change the assignment 
in any way, it just adds clarity. 


• How was the practice midterm? It is longer than the quiz because (a) you 
are more used to this now and (b) you do not have to type. 



Midterm Details

• The content is from Chapters 1 - 7 


• Chapter 7 is Introduction to Prediction problems


• Chapter 8 is Linear Regression. Exam does not cover linear regression


• The exam only covers what is in the notes


• The focus is Chapters 4-7, but Chapter 1-3 are important background



Very brief summary of Ch 1-3

• Probability


• Estimators



Probability

• Define a random variable


• Define joint and conditional probabilities for continuous and discrete 
random variables


• Define probability mass functions and probability density functions


• Define independence and conditional independence


• Define expectations for continuous and discrete random variables 


• Define variance for continuous and discrete random variables



Probability (2)

• Represent a problem probabilistically


• e.g., how likely was the outcome?


• Use a provided distribution


• I will always remind you of the density expression for a given distribution


• Apply Bayes' Rule to manipulate probabilities



Estimators
• Define estimator


• Define bias


• Demonstrate that an estimator is/is not biased  

• Derive an expression for the variance of an estimator 


• Define consistency


• Demonstrate that an estimator is/is not consistent


• Justify when the use of a biased estimator is preferable 



Poll Question: When is the use of a 
biased estimator preferable?

• 1. It is always better because it biases towards the true solution


• 2. If the bias reduces the mean-squared error by reducing the variance


• 3. If the bias reduces the mean-squared error by reducing the variance


• 4. It is rarely justifiable

Answer: 2



Estimators (2)

• Apply concentration inequalities to derive confidence bounds


• Define sample complexity


• Apply concentration inequalities to derive sample complexity bounds


• Explain when a given concentration inequality can/cannot be used



Optimization

• Represent a problem as an optimization problem


• Solve a discrete problem by iterating over options and picking the one with 
the minimum value according to the objective


• Solve a continuous optimization problem by finding stationary points 


• Poll: What is a stationary point?



Poll Question: The following are true 
about stationary points

• 1. A stationary point is the global minimum of a function


• 2. A stationary point is a point where the gradient is zero


• 3. A global minimum is a stationary point, but a stationary point may not be 
a global minimum


• 4. If we find a stationary point, then we have found the minimum of our 
function


• 5. We can use the second derivative test to identify the type of stationary 
point we have

Answer: 2, 3 and 5



Optimization
• Represent a problem as an optimization problem


• Solve an analytic optimization problem by finding stationary points 


• Define first-order gradient descent 


• Define second-order gradient descent 


• Define step size and adaptive step size


• Explain the role and importance of step sizes in first-order gradient descent


• Apply gradient descent to numerically find local optima



Exercise

• Imagine . 


• What is the first-order update, assuming we are currently at point ?  


• i.e., the gradient descent update tells us how to modify our current point 
to descend on our surface c.

c(w) = 1
2 (xw − y)2

wt

Answer:  for some stepsize wt+1 ← wt − ηtc′￼(wt) ηt > 0

   so we have that.  c′￼(w) = (xw − y)x wt+1 ← wt − ηt(xwt − y)x



Exercise
• Imagine . 


• What is the first-order update, assuming we are currently at point ?  


• i.e., the gradient descent update tells us how to modify our current point 
to descend on our surface c.


• What if instead we did . What would happen?


• The second-order update is . Why might this update 

be preferable to the first-order? (poll)

c(w) = 1
2 (xw − y)2

wt

wt+1 ← wt + ηtc′￼(wt)

wt+1 ← wt −
c′￼(wt)
c′￼′￼(wt)



Poll Question: Why might the 
second-order update be preferable?

• 1. It is easier to compute than the first-order one.


• 2. It tells us how to pick a good stepsize.


• 3. The second-order update is more likely to get stuck at a saddlepoint


• 4. The first-order update might get stuck in local minimum, but not the 
second-order update

Answer: 2



Parameter Estimation
• Formalize a problem as a parameter estimation problem 

• e.g., formalize modeling commute times as parameter estimation for a 
Poisson distribution, using maximum likelihood 


• Describe the differences between MAP, MLE, and Bayesian 
parameter estimation 


• MAP  versus MLE 


• Bayesian learns , reasons about plausible parameters


• Define a conjugate prior

max
θ

p(θ |𝒟) max
θ

p(𝒟 |θ)

p(θ |𝒟)



The Likelihood Term and the Prior

• Likelihood:  



• e.g., Poisson 

p(𝒟 |w) = Πn
i=1p(xi |w)

p(xi |w) =
wxi exp(−w)

xi!

• Prior:  
 for pdf or pmf 

parameters 


• e.g., conjugate prior for 
Poisson is Gamma with 
parameters 

p(w |θ0)
θ0

θ0 = (a, b)

p(w |θ0) =
wa−1 exp(−w/b)

baΓ(a)



The Likelihood Term and the Prior
• Likelihood:  




• e.g., Poisson 

p(𝒟 |w) = Πn
i=1p(xi |w)

p(xi |w) =
wxi exp(−w)

xi!

• Prior:  
 for pdf or pmf 

parameters 


• e.g., conjugate prior for 
Poisson is Gamma with 
parameters 

p(w |θ0)
θ0

θ0 = (a, b)

p(w |θ0) =
wa−1 exp(−w/b)

baΓ(a)• MLE: maximize 



• MAP: maximize

p(𝒟 |w) = Πn
i=1p(xi |w)

p(𝒟 |w)p(w |θ0) = p(w |θ0)Πn
i=1p(xi |w)



The Likelihood Term and the Prior
• Prior:  

 for pdf or pmf 
parameters 


• e.g., conjugate prior for 
Poisson is Gamma with 
parameters 

p(w |θ0)
θ0

θ0 = (a, b)

p(w |θ0) =
wa−1 exp(−w/b)

baΓ(a)

• MLE: maximize 



• MAP: maximize



• Bayesian: obtain posterior 


• e.g., if Poisson likelihood with conjugate prior 
Gamma with prior parameters , then 
posterior is Gamma with   where 

 and 

p(𝒟 |w) = Πn
i=1p(xi |w)

p(𝒟 |w)p(w |θ0) = p(w |θ0)Πn
i=1p(xi |w)

p(w |𝒟)

θ0 = (a, b)
θn = (an, bn)

an = a +
n

∑
i=1

xi bn =
1

n + 1/b



Gamma Prior and Posterior
• For a = 3 and b = 1, we have  because 


•
For  we have 


•
 and 


•

p(w) = 1
2 w2 exp(−w) Γ(3) = 2

𝒟 = {2,5,9,5,4,8}
n

∑
i=1

xi = 33

an = a +
n

∑
i=1

xi = 36 bn =
1

n + 1/b
= 1/7

p(w |𝒟) =
wan−1 exp(−w/bn)

ban
n Γ(an)

=
w35 exp(−7w)

7−36Γ(36)



Gamma Prior and Posterior
• For a = 3 and b = 1, we have  as 


•  (Red)

p(w) = 1
2 w2 exp(−w) Γ(k) = (k − 1)!

p(w |𝒟) =
wan−1 exp(−w/bn)

ban
n Γ(an)

=
w35 exp(−7w)

7−36Γ(36)

3/15/22, 1:33 PM Desmos | Graphing Calculator

https://www.desmos.com/calculator 1/2



Poll Question: Why is MAP useful, namely why is it useful 
to include a prior over the weights? (Select all that apply)

• 1. It incorporates bias to reduce the variance


• 2. The prior makes our solution closer to the true solution


• 3. It lets us reason about uncertainty in our parameters


• 4. It let's us incorporate expert knowledge about plausible weight values

Answer: 1, 4



Formalizing Prediction

• Supervised learning problem: Learn a predictor  from a 
dataset 


•  is the set of observations, and  is the set of targets

• Classification problems have discrete, unordered targets

• Regression problems have continuous targets

• Predictor performance is measured by the expected  of 

predicting  when the true value is 

• An optimal predictor for a given distribution minimizes the expected cost

f : 𝒳 → 𝒴
𝒟 = {(xi, yi)}n

i=1

𝒳 𝒴

cost( ̂y, y)
̂y y



Prediction Concepts
• Describe the differences between regression and classification


• Derive the optimal classification predictor for a given cost 


• Derive the optimal regression predictor for a given cost


• Understand that the optimal predictor is different depending on the cost


• Describe the difference between irreducible and reducible error

• Even an optimal predictor has some irreducible error. 

Suboptimal predictors have additional, reducible error

Reducible error Irreducible error

𝔼[C] = 𝔼 [(f(X) − f*(X))2] + 𝔼 [(f*(X) − Y)2]



Is Cost the Same as our Objective c?

• We gave this a different name to indicate it might not be


• The Cost is the penalty we incur for inaccuracy in our predictions


• We parameterize our function or distribution with parameters  


• Our objective to find  has typically been the negative log likelihood


• Example: we might learn  using 


• For the 0-1 cost, we evaluate the predictor 

w

w

p(y |x, w) c(w) = − ln p(𝒟 |w)

f(x) = arg max
y

p(y |x, w)



Any Questions?

• Switch now to going over the practice midterm


