Review for Quiz
Chapter 2 (Probability)
Chapter 3 (Estimation):
Bias, Variance, Concentration Inequalities

CMPUT 267: Basics of Machine Learning



| ogistics

* Quiz during class on Thursday
e Join 10 minutes early on Zoom lecture

* Any questions/issues with Assignment 27



| anguage of Probabllities

e Define random variables, and their distributions

 T[hen can formally reason about them

e EXxpress our beliefs about behaviour of these RVs, and relationships to other RVs
e Examples:
e pP(Xx) Gaussian means we believe X is Gaussian distributed

o ply | X =x)—or written p(y | Xx)— is Gaussian means that when conditioned on
X, Yy IS Gaussian; but p(y) might not be Gaussian

e p(w)and p(w | Data)



PMFEFs and PDFs

e Discrete RVs have PMFs 0.35|
e outcome space: e.g, Q = {1,2,3,4,5,6} ?‘;222
/”tke—/l 0:10:
. examples pmfs: probability tables, Poisson p(k) = x |
» (Continuous RVs have PDFs o1
+ outcome space: e.g., £2 = |0,1] "
» example pdf: Gaussian, Gamma . \




A few guestions

Do PMFs p(x) have to output values between [0,1]7

Do PDFs p(x) have to output values between [0,1]?

 \What other condition(s) are put on a function p to make it a valid pmf or pdf”



A few guestions

Do PMFs p(x) have to output values between [0,1]7 Yes

* Do PDFs p(x) have to output values between [0,1]7 No (between O, infinity))

 \What other condition(s) are put on a function p to make it a valid pmf or pdf”

PMF; Zp(x) =1

b= A

. PDF: J p(X)d)C — |
VA




A few guestions

e [s the following function a pdf or a pmf?

1

<x< |

Cpx) = b-a fa<xsb, .e., p(x) = forx € [a, b]
0 otherwise. b—a



HOW Would you define a uniform
distribution for a discrete RV

e Imaginex € {1,2,3,4,5}

e What is the uniform pmf for this outcome space??

D) = {% fxe {12345,

0 otherwise.



HOW dO You answer tnis
probabllistic guestion”

* For continuous RV X with a uniform distribution and outcome space [0,10],

what is the probability that X is greater than 77
10

10
|
Pr(X > 7) = J p(x)dx = [ —dx

. - 10

| 1
= —[ dx = —Xx |;O

10 J- 10
3

10



Multivariate Setting

X,
Condtional distrioution, p(y | %) = 222 Marginal p(y) = D p(x.y)
p(x) et

Chain Rule p(x,y) = p(y | x)p(x) = p(x | y)p(y)

X
Bayes Rule p(y | x) = —p( VPO
p(x)
Law of total probability p(y) = Z p(y|x)p(x)
b= A

Question: How do you get the law of total probability from the chain rule?

p») = ) pte.y)= ) p(y|0)pw)

xed xed&



EXxpectations

2. o JOPp(x) if X'is discrete,
[ /00)] = o
f% fx)px)dy if X'is continuous.

0 X ={1,2,3.4,5), f(x) = x*, Y = f(X), map {1,2,3,4,5} — {1,4,9,16,25},
p(y) determined by p(x),e.g, p(Y =4) = p(X = 2)

—g: X ={-1,0,1},f(x) =|x]|, Y =fX), map {—1,0,1} — {0,1}
p¥=1)=pX=-1D+pX=1EY]= ) ypM= Y fpX

yEO,l ,X,'E{—I,O,l}




Conditional Expectations

Definition:
The expected value of ¥ conditional on X = x is

Zyey yp(y | x) if Yis discrete,
_[Y ‘ X — x] —
f? yp(y | X) dy if Y is continuous.




Conditional Expectation Example

o X is the type of a book, O for fiction and 1 for non-fiction

« p(X = 1) is the proportion of all books that are non-fiction

e Y is the number of pages

» p(Y = 100) is the proportion of all books with 100 pages
» p(y|X = 0) is different from p(y | X = 1)

« E[Y|X = 0] is different from E[Y | X = 1]
« e.9.E[Y|X = 0] =70 is different from E[Y|X = 1] = 150




Conditional Expectation Example (cont)

p(y| X =0) piy|X=1)

Ml

« E[Y|X = 0] is the expectation over Y under distribution p(y | X = 0)

« E[Y|X = 1] is the expectation over Y under distribution p(y | X = 1)




What if Y Is dollars earned”?

* Y is now a continuous RV, and X is still a discrete (binary) RV

» What is p(y|x)?



What if Y Is dollars earned”?

e Y IS now a continuous RV

» Notice that p(y | x) is defined by p(y | X = 0) and p(y| X = 1)

» \What might be a reasonable choice for p(y | X = 0) and p(y | X = 1)?



What if Y Is dollars earned”?

» Notice that p(y | x) is defined by p(y | X = 0) and p(y | X = 1)
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EXercises

Come up with an example of X and Y, and give possible choices for p(y | X)

Do you need to know p(x) to specify p(y | X)?

Are there any restrictions on the RVs X and Y, to let us specify p(y | x)?

f we have p(y | x), can we get p(x | y)? Why or why not?



Properties of Expectations

e Linearity of expectation:

« [ElcX] = cE[X] for all constant ¢
» E[X+¥]=E[X]+ E[Y]

* Products of expectations of
independent random variables X, Y-

- E[XY] = E[X]E[Y]

- €]

 [aw of Total Expectation:

—[Y\X]] = E[Y]

You should know linearity of expectation



Variance

Definition: The variance of a random variable Is

Var(X) =

= [(X—

E[X])?|.

.e., E] f(X)] where f(x) = (x — -[X])z.

—quivalently,

Var(X) =

= [X?] - (E[X))°




Covariance

Definition: The covariance of two random variables Is

Cov(X,Y) =

= [(X—

=X ]

E[XI(Y — E[Y])]

(Y]

Large Negative

Covariance

Near Zero

Large Positive

Covariance Covariance




Properties of Varlances

» Var[c] = 0 for constant ¢ You should know all these properties

e Var[cX] = ¢*Var[X] for constant ¢

e Var| X+ Y] = Var|X] + Var| Y] + 2Cov| X, Y]

» Forindependent X, Y, because Cov[X, Y] =0

Var|X + Y| = Var[ X ]| + Var| Y]



INndependent and [dentically
Distributed (1.i.d.) Samples

* We usually won't try to estimate anything about a distribution based on only a single sample

* Usually, we use multiple samples from the same distribution
 Multile samples: This gives us more information
o Same distribution: We want to learn about a single population

* One additional condition: the samples must be independent

Definition: \When a set of random variables are X, X,, ... are all

independent, and each has the same distribution X ~ F, we say they are i.i.d.
(independent and identically distributed), written

X, X,,... X F




Estimating Expected Value
via the Sample Mean

m ] | | | v 1 -
Example: We have n i.i.d. samples from the same distribution £, “[X] = E [ Z X]

X, Xy, ... X, ' F

1 n
with E[X;] = p and Var(X;) = o for each X;. T 1 =1X]
We want to estimate . 1
=1
Let's use the sample mean X = Z X; to estimate . i
=1 = ;nﬂ



B

dS

Definition: The bias of an estimator X is its expected
difference from the true value of the estimated quantity X:

Bias(X) = F[X] —

= [ X ]

e Bias can be positive or negative or zero

+ When Bias(X) = 0, we say that the estimator X is unbiased

Questions:

What is the bias of the
following estimators of

1.

2.

- X7

Y ~ Uniform[0,10]

Y = E[X] + Z,
where
Z ~ Uniform[0,]1]

Y =[E[X]+ Z
where Z ~ N(0,1007)

1 n
Y=;§X,.




Variance of the estimator

] 1 &
* |ntuitively, more samples should make the estimator Var[X] = Var s ZXl]
"closer" to the estimated quantity =1
* We can formalize this intuition partly by characterizing = — Var [ZXl]
A n .
the variance Var| X| of the estimator itself. i=1
* The variance of the estimator should decrease as — iz zn: Var[X/]
the number of samples increases S
—_ . . | 1 n ,
« Example: X for estimating u: =— 20
 The variance of the estimator shrinks linearly as -
the number of samples grows. b 1,

n2 7



Mean-Squared Error

* Bias: whether an estimator is correct in expectation
 Consistency: whether an estimator is correct in the limit of infinite data

 Convergence rate: how fast the estimator approaches its own mean

e For an unbiased estimator, this Is also how fast its error bounds shrink

 \We don't necessarily care about an estimator being unbiased.

o Often, what we care about is our estimator's accuracy in expectation

Definition: Mean squared error of an estimator X of a quantity X:

MSE(®) = E |(X - ELX])|
N/

\ 7
different!




Blas-Variance [radeoft

MSE(X) = Var[X] + Bias(X)?

If we can decrease bias without increasing variance, error goes down
If we can decrease variance without increasing bias, error goes down
Question: Would we ever want to increase bias?

YES. If we can increase (squared) bias in a way that decreases variance
more, then error goes down!

* Interpretation: Biasing the estimator toward values that are more likely
to be true (based on prior information)



Downward-plased Mean Estimation

1 n
Example: Let's estimate y given i.i.d Xy, ..., X, with E|X;] = g using: ¥ = X;
p "9 ] [ X | = p 9 22100 ,221
This estimator Is biased: his estimator has low variance:
1 n 1 n
-|1Y | = [ X. Var(Y) = Var X.
7] [n+1()()i_z1 l] ) [n+100i21 l]
1 n
— - [ X X
1 |
_ U B |
n+ 100 ~ (n+ 1002 Z varldl
Bias(Y) 7 —100 ; =1
148 — — U =
n+ 1000 T L4100 =’

(n + 100)2



cstimating 1 Near O

Example: Supposethato =1, n = 10, and u = 0.1

MSE(X) = Var(X) + Bias(X)? MSE(Y) = Var(Y) + Bias(Y)?
= Var(X) vat) =~ " i ( 100 )2
" = O u
1 (n + 100)2 n+ 100
10 10 100\’
= + ( —0.1
1102 110

~9x 10~



Exercise: What Is the variance ot
these estimators”?

Example:

—stimating

p(x)

|

ﬂ

F[X]

—100

—50

-

50 100

-[ X | forrv. X € R.

Questions:

Suppose we can observe a different variable Y. Is Y a

good estimator of E[X ] in the following cases? Why or
why not?

1. Y ~ Uniform[0,10]
2. Y =E[X]+ Z, where Z ~ N(0,100%)

1 n
3. Y=;;Xi, for X, ~ p




Exercise: What Is the variance ot
n - these estimators”?

F[X]

p(x)

] < |
Var | — Xi| = —o6?
2]

)|\

—100 —50 0 50 100

. 100 _
Estimators: Var(Y,) = —(1() 0)? = = 8.3

12
1. Y, ~ Uniform[0,10]
2. Y, = —[X] + Z, where Z ~ N(0,100%) | Var(Y,) = Var(E[X] + Z) =

3. Y, =— ZX for X, ~ p 2
n




Exercise: What Is the variance ot

these estimators”?

Estimators:

1. Y, ~ Uniform[0,10]

2. Y, = E[X] + Z, where Z ~ N(0,100°)

1 n
3. Y, =;ZX1., for X, ~ p

=1

Var(Y,) = Var(E[X] + Z)
= Var(Z)
= 100?

> Var(c+ Y) = Var(Y)



I\/ISE Of these estimators

p(x)

\

F[X]

/

\

—100

—50

0 50

100

Var(Y,) = —(10 0)* =

Var(Y,)

= Var(E[X]

2

Var(Y;) = 2
n

1.

3. Y, =— ZX for X, ~ p

6

— —[X] + Z, where Z ~ N(0,100?)

=1

Estimators:

Y| ~ Uniform[0,10]

12

Z) = 1007

MSE(Y,) = 5% + 8.3

MSE(Y,) = 0 + 100* =

MSE(Y;) = 0+ 2
n

2

= 8.3 Bias(Y,) = E[Y,] - E[X] =5

Bias(Y,) =

= 33.3

10000

[ Y,] - E[X] =0

MSE(X) = Var[X] + Bias(X)?




Concentration Inequalities

. We would like to be able to claim PI’(|X—//t < (—J) >1-0

for some 0, € > ()



Hoeffding's Inequality

Theorem: Hoeffding's Inequality

Suppose that X, ..., X are distributed i.i.d, witha < X. < b.
Then for any € > 0,

_ _ 2ne?
Pr(|X— “[X]| > e) < 2exp (—(b_a)z)

- ( o 1n(2/5))
—quivalently, Pr{ | X — E[X] | < (b -a) > 1 —0.

2n




Chebyshev's Inequality

Theorem: Chebyshev's Inequality

Suppose that X, ..., X, are distributed i.i.d. with variance c?.

Then for any € > 0,

Pr(|X— (X ze) <2

—quivalently, Pr | | X — E[X] S\ —1>1-0




When to Use Chebyshey,
When to Use Hoeffding”

1
. Ifa < X; < b, then Var[X]] < —(b — a)*

1n(2/ 5) 1n(2/ 0) 1
. Hoeffding's inequality gives € = (b — a (b —

o’ (b — a)2 1
Chebyshev's inequality gives € = 4/ — (b — a)
on 4ém 2\/_

 Hoeffding's inequality gives a tighter bound®, but it can only be used on bounded random

variables

In(2/6) 1
N whenever < = o6< ~0.232
2 2\/5

« Chebyshev's inequality can be applied even for unbounded variables



Sample Complexity

Definition:
The sample complexity of an estimator is the number of samples required to guarantee an
error of at most € with probability 1 — o, for given 0 and €.

* We want sample complexity to be small

o Sample complexity is determined by:

1. The estimator itself
e Smarter estimators can sometimes improve sample complexity

2. Properties of the data generating process
e [f the data are high-variance, we need more samples for an accurate estimate

 But we can reduce the sample complexity if we can bias our estimate toward the
correct value




Sample Complexity

Definition:
The sample complexity of an estimator is the number of samples required to guarantee an expected error
of at most € with probability 1 — o, for given 6 and €.

For 6 = 0.05, Chebyshev gives With Gaussian assumption and 6 = 0.03,

%]
o2 1 o € = 1.96——

on  1/0.05 \/n vn

= \/Z = 1.96—

O
& ¢ =44]— €
n
= 3 8462
O = 3.04——
— \/ﬁ =4.47— . 2
€

2

O
— n=1998—
62



Summary

Concentration inequalities let us bound the probability of a given estimator being at
least € from the estimated quantity

Sample complexity is the number of samples needed to attain a desired error bound €
at a desired probability 1 — o

 We only discussed sample complexity for unbiased estimators
The mean squared error of an estimator decomposes into bias (squared) and variance

Using a biased estimator can have lower error than an unbiased estimator

e Bias the estimator based on some prior information

o But this only helps if the prior information is correct, cannot reduce error by adding in
arbitrary bias



