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Recap

 

• Assignment 1 released 

• Thought Questions 1 due soon (January 28) 
• Biggest reading since it covers much of the background

This class is about understanding machine learning techniques by 
understanding their basic mathematical underpinnings



Outline

1. Probabilities 

2. Defining Distributions 

3. Random Variables



Why Probabilities?
Even if the world is completely deterministic, outcomes can look random 
(why?) 

Example: A high-tech gumball machine behaves according to 
,  

where  = has candy and  = battery charged. 

• You can only see if it has candy (only see ) 

• From your perspective, when , sometimes candy is output, 
sometimes it isn't 

• It looks stochastic, because it depends on the hidden input 

f(x1, x2) = output candy if x1 & x2
x1 x2

x1

x1 = 1

x2



Measuring Uncertainty
• Probability is a way of measuring uncertainty 

• We assign a number between 0 and 1 to events (hypotheses): 

• 0 means absolutely certain that statement is false 

• 1 means absolutely certain that statement is true 

• Intermediate values mean more or less certain 

• Probability is a measurement of uncertainty, not truth 

• A statement with probability .75 is not "mostly true" 

• Rather, we believe it is more likely to be true than not



Subjective vs. Objective: 
The Frequentist Perspective

• Probabilities can be interpreted 
as objective statements about the world, or 
as subjective statements about an agent's beliefs. 

• Objective view is called frequentist: 

• The probability of an event is the proportion of times it would happen in the 
long run of repeated experiments 

• Every event has a single, true probability



Subjective vs. Objective: 
The Bayesian Perspective

• Probabilities can be interpreted 
as objective statements about the world, or 
as subjective statements about an agent's beliefs. 

• Subjective view is called Bayesian: 

• The probability of an event is a measure of an agent's belief about its 
likelihood 

• Different agents can legitimately have different beliefs, so they can 
legitimately assign different probabilities to the same event 

• Different beliefs due to different contexts and different assumptions



Example
• Estimating the average height of a person in the world 

• There is a true population mean  

• which can be computed by averaging the heights of every person 

• An objective view might be to compute a sample average h from a subpopulation 

• e.g., you randomly sample 1000 people from around the whole world 

• h estimates this true fact about the world, the true mean 

• A subjective view is to represent a belief p(H) that gives a distribution over 
plausible values of the average height



This distinction exists historically but is 
a tad annoying and complicated

• All you need to know is that we will both be trying to estimate underlying 
parameters (e.g., average heights) 

• And we will reason about our own beliefs (uncertainty) for our estimates 

• In math, we will sometimes directly compute sample averages and sometimes we 
will keep distributions of plausible values 

• They are both useful, with different preferences depending on the setting 

• The one key thing to take away: probabilities aren’t always objectively about 
the world. We use them to reason about our own knowledge



Prerequisites Check
• Derivatives 

• Rarely integration 
• I will teach you about partial derivatives 

• Vectors and dot-products 

• Set notation 
• Complement  of a set, union  of sets, intersection of sets  
• Set of sets, power set  

• Some basics of probability.  (We will cover more today)

Ac A ∪ B A ∩ B
𝒫(A)



Terminology
• If you are unsure, notation sheet in the notes is a good starting point 

• Countable: A set whose elements can be assigned an integer index 
• The integers themselves 
• Any finite set, e.g.,  
• We'll sometimes say discrete, even though that's a little imprecise 

• Uncountable: Sets whose elements cannot be assigned an integer index 
• Real numbers  
• Intervals of real numbers, e.g., ,  
• Sometimes we'll say continuous

{0.1,2.0,3.7,4.123}

ℝ
[0,1] (−∞,0)



Outcomes and Events

All probabilities are defined with respect to a measurable space  of 
outcomes and events: 

•  is the sample space: The set of all possible outcomes 

•  is the event space: A set of subsets of  that satisfies two 
key properties (that I will define in two slides)

(Ω, ℰ)

Ω

ℰ ⊆ 𝒫(Ω) Ω



Examples of Discrete & Continuous 
Sample Spaces and Events

Continuous (uncountable) outcomes 

 

 

 

 

Typically:  ("Borel field") 

Ω = [0,1]

Ω = ℝ

Ω = ℝk

ℰ = {∅, [0,0.5], (0.5,1.0], [0,1]}

ℰ = B(Ω)

Discrete (countable) outcomes 

 

 

 

 

Typically: 

Ω = {1,2,3,4,5,6}

Ω = {person, woman, man, camera, TV, …}

Ω = ℕ

ℰ = {∅, {1,2}, {3,4,5,6}, {1,2,3,4,5,6}}

ℰ = 𝒫(Ω)



Event Spaces

1. A collection of outcomes (e.g., either a 2 or a 6 were rolled) is an event. 
2. If we can measure that an event has occurred, then we should also be able to 

measure that the event has not occurred; i.e., its complement is measurable. 
3. If we can measure two events separately, then we should be able to tell if one 

of them has happened; i.e., their union should be measurable too.

Definition: 
A set  is an event space if it satisfies 

1.  

2.

ℰ ⊆ 𝒫(Ω)
A ∈ ℰ ⟹ Ac ∈ ℰ

A1, A2, … ∈ ℰ ⟹
∞

⋃
i=1

Ai ∈ ℰ



Discrete vs. Continuous 
Sample Spaces

Continuous (uncountable) outcomes 

 

 

 

 

Typically:  ("Borel field") 

Note:  not 

Ω = [0,1]

Ω = ℝ

Ω = ℝk

ℰ = {∅, [0,0.5], (0.5,1.0], [0,1]}

ℰ = B(Ω)

𝒫(Ω)

Discrete (countable) outcomes 

 

 

 

 

Typically:  

Question: 
?

Ω = {1,2,3,4,5,6}

Ω = {person, woman, man, camera, TV, …}

Ω = ℕ

ℰ = {∅, {1,2}, {3,4,5,6}, {1,2,3,4,5,6}}

ℰ = 𝒫(Ω)

ℰ = {{1}, {2}, {3}, {4}, {5}, {6}}



Exercise
• Write down the power set of {1, 2, 3} 

• More advanced: Why is the power set a valid event space? Hint: Check the 
two properties

Definition: 
A set  is an event space if it satisfies 

1.  

2.

ℰ ⊆ 𝒫(Ω)
A ∈ ℰ ⟹ Ac ∈ ℰ

A1, A2, … ∈ ℰ ⟹
∞

⋃
i=1

Ai ∈ ℰ



Exercise answer
•  

•

Ω = {1,2,3}

𝒫(Ω) = {∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

• Proof that the power set satisfies the two properties 

• Take any  (e.g., ). Then  is 
a subset of , and so  since the power set contains all subsets 

• Take any . Then , and so   

• More generally, for an infinite union, see: https://proofwiki.org/wiki/
Power_Set_is_Closed_under_Countable_Unions

A ∈ 𝒫(Ω) A = {1} or A = {1,2} Ac = Ω − A
Ω Ac ∈ 𝒫(Ω)

A, B ∈ 𝒫(Ω) A ∪ B ⊂ Ω A ∪ B ∈ 𝒫(Ω)

https://proofwiki.org/wiki/Power_Set_is_Closed_under_Countable_Unions
https://proofwiki.org/wiki/Power_Set_is_Closed_under_Countable_Unions
https://proofwiki.org/wiki/Power_Set_is_Closed_under_Countable_Unions


Axioms

If  is a probability measure over , then  is a probability space.P (Ω, ℰ) (Ω, ℰ, P)

Definition:  
Given a measurable space , any function  satisfying 

1. unit measure: , and 

2. -additivity:  for any countable sequence 

 where  whenever  

is a probability measure (or probability distribution).

(Ω, ℰ) P : ℰ → [0,1]

P(Ω) = 1

σ P (
∞

⋃
i=1

Ai) =
∞

∑
i=1

P(Ai)

A1, A2, … ∈ ℰ Ai ∩ Aj = ∅ i ≠ j



Defining a Distribution
Example: 

 

 

 

where .

Ω = {0,1}

ℰ = {∅, {0}, {1}, Ω}

P =

1 − α if A = {0}
α if A = {1}
0 if A = ∅
1 if A = Ω

α ∈ [0,1]

Questions: 

1. Do you recognize this 
distribution? 

2. How should we choose  
in practice? 

a. Can we choose an 
arbitrary function? 

b. How can we guarantee 
that all of the constraints 
will be satisfied?

P



Probability Mass Functions (PMFs)

 

• For a discrete sample space, instead of defining  directly, we can define a 
probability mass function . 

•  gives a probability for outcomes instead of events 

•
The probability for any event  is then defined as .

Definition: Given a discrete sample space  and event space 
, any function  satisfying  is  

a probability mass function.

Ω
ℰ = 𝒫(Ω) p : Ω → [0,1] ∑

ω∈Ω

p(ω) = 1

P
p : Ω → [0,1]

p

A ∈ ℰ P(A) = ∑
ω∈Ω

p(ω)



Example: PMF for a Fair Die
A categorical distribution is a distribution over a finite outcome space, 
where the probability of each outcome is specified separately. 

Example: Fair Die 

 

 

Ω = {1,2,3,4,5,6}

p(ω) =
1
6

ωp(ω)

1 1/6

2 1/6
3 1/6

4 1/6

5 1/6
6 1/6

Questions: 

1. What is a possible event?  
What is its probability? 

2. What is the event space?



Example: Using a PMF

• Suppose that you recorded your commute time (in minutes) every day for a 
year (i.e., 365 recorded times). 

• Question: How do you get ? 

• Question: How is  useful?

p(t)

p(t)

.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24



Useful PMFs: Bernoulli

A Bernoulli distribution is a special case of a categorical distribution in 
which there are only two outcomes.  It has a single parameter . 

  (or ) 

 

α ∈ (0,1)

Ω = {T, F} Ω = {S, F}

p(ω) = {α if ω = T
1 − α if ω = F .

Alternatively:  

  for 

Ω = {0,1}

p(k) = αk(1 − α)1−k k ∈ {0,1}



Useful PMFs: Poisson
A Poisson distribution is a distribution over the non-negative integers.   
It has a single parameter . 

E.g., number of  calls received by a call centre in an hour,  is the average 
number of calls 

 

 

λ ∈ (0,∞)

λ

p(k) =
λke−λ

k!

Questions: 

1. Could we define this with a 
table instead of an equation? 

2. How can we check whether 
this is a valid PMF? 

3.  real-valued, but outcome is 
discrete. What might be the 
mode (most likely outcome)?

λ

(Image: Wikipedia)



Commute Times Again
• Question: Could we use a Poisson distribution for commute times 

(instead of a categorical distribution)? 

• Question: What would be the benefit of using a Poisson distribution?

.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24

p(k) =
λke−λ

k!
p(4) = 1/365, p(5) = 2/365, p(6) = 4/365, …



.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24

Continuous Commute Times
• It never actually takes exactly 12 minutes; I rounded each observation to the 

nearest integer number of minutes. 
• Actual data was 12.345 minutes, 11.78213 minutes, etc.



Using Histograms
Consider the continuous commuting example again, with observations 12.345 
minutes, 11.78213 minutes, etc. 

 

• Question: How could we turn our observations into a histogram? 

• Question: How do we use we the histogram to get these probabilities?

.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24



.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24

Continuous Commute Times
• It never actually takes exactly 12 minutes; I rounded each observation to the 

nearest integer number of minutes. 
• Actual data was 12.345 minutes, 11.78213 minutes, etc. 

• Question: Could we use a Poisson distribution to predict the exact 
commute time (rather than the nearest number of minutes)?  Why?



Probability Density Functions (PDFs)

 

• For a continuous sample space, instead of defining  directly, we can define 
a probability density function . 

• The probability for any event  is then defined as  

.

Definition: Given a continuous sample space  and event space 

, any function  satisfying  is  

a probability density function.

Ω
ℰ = B(Ω) p : Ω → [0,∞) ∫Ω

p(ω)dω = 1

P
p : Ω → [0,∞)

A ∈ ℰ

P(A) = ∫A
p(ω)dω



Recall Integration



Useful PDFs: Uniform
A uniform distribution is a distribution over a real interval.  It has two 
parameters:  and . 

 

 

Question: Does  have to be bounded?

a b

Ω = [a, b]

p(ω) = {
1

b − a
if a ≤ ω ≤ b,

0 otherwise.

Ω

0 ba



Exercise: Check that the uniform 
pdf satisfies the required properties

• Recall that the antiderivative of 1 is x, because the derivative of x is 1 

•

∫
b

a
p(x)dx = ∫

b

a

1
b − a

dx

=
1

b − a ∫
b

a
dx =

1
b − a

x |b
a

=
1

b − a
(b − a) = 1



Useful PDFs: Gaussian

A Gaussian distribution is a distribution over the real numbers.  It has two 
parameters:  and . 

 

 

where 

μ ∈ ℝ σ ∈ ℝ+

Ω = ℝ

p(ω) =
1

2πσ2
exp (−

1
2σ2

(ω − μ)2)
exp(x) = ex



Why the distinction between  
PMFs and PDFs?

1. When sample space  is discrete: 
• Singleton event:  for  

2. When sample space  is continuous: 
• Example: Stopping time for a car with  
• Question: What is the probability that the stopping time is 

exactly 3.14159? 

 

• More reasonable: Probability that stopping time is between 3 to 3.5.

Ω
P({ω}) = p(ω) ω ∈ Ω

Ω
Ω = [3,12]

P({3.14159}) = ∫
3.14159

3.14159
p(ω)dω

P(A) = ∫A
p(ω)dω

P(A) = ∑
ω∈Ω

p(ω)



Example comparing  
integration and summation

Imagine we have a Gaussian distribution

""

Let's pretend we
discretized to get a PMF

y
= : for xe (i-hi ]
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, 103 ) = E PY )

X
YEA

Both reflect density or mass in

'

a region .

simian Inn!!?¥¥÷.

emit:*



Example comparing  
integration and summation (cont)

Imagine we have a Gaussian distribution

""

Let's pretend we
discretized to get a PMF

y
= : for xe (i-hi ]

0.05
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simian Inn!!?¥¥÷.

emit:*



Example comparing  
integration and summation (cont)

Imagine we have a Gaussian distribution

""

Let's pretend we
discretized to get a PMF

y
= : for xe (i-hi ]

0.05
-
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simian Inn!!?¥¥÷.

emit:*



Example comparing  
integration and summation (cont)

Imagine we have a Gaussian distribution

""

Let's pretend we
discretized to get a PMF

y
= : for xe (i-hi ]

0.05
-
-

-

- ply
-
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05
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.

Iii: :c: T.si:c. "
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-
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prey ← Eh 2,3 .
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, 103 ) = E PY )

X
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Both reflect density or mass in

'
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simian Inn!!?¥¥÷.

emit:*



Useful PDFs: Exponential
An exponential distribution is a distribution over the positive reals.  It has one 
parameter . 

 

 

λ > 0

Ω = ℝ+

p(ω) = λ exp(−λω)
1 is here!



Why can the density be above 1?

Consider an interval event , for small . 

. 

•  can be big, because  can be very small 
• In particular,  can be bigger than 1 

• But  must be less than or equal to 1

A = [x, x + Δx] Δx

P(A) = ∫
x+Δx

x
p(ω) dω

≈ p(x)Δx

p(x) Δx
p(x)

P(A)



Review So Far

• Imagine I asked you to tell me the probability that my birthday is on February 
10 or July 9.  

• What is the outcome space and what is the event for this question? 
• Would we use a PMF or PDF to model these probabilities? 

• Imagine I asked you to tell me the probability that the uber would be here in 
between 3-5 minutes 

• What is the outcome space and what is the event for this question? 
• Would we use a PMF or PDF to model these probabilities?



Random Variables
Random variables are a way of reasoning about a complicated underlying 
probability space in a more straightforward way. 

Example: Suppose we observe both a die's number, and where it lands. 

 

We might want to think about the probability that we get a large number, 
without thinking about where it landed.   

We could ask about , where 

 = number that comes up.

Ω = {(left,1), (right,1), (left,2), (right,2), …, (right,6)}

P(X ≥ 4)
X



Random Variables, Formally
Given a probability space , a random variable is a function 

 (where  is some other outcome space), satisfying 

. 

It follows that . 

Example: Let  be a population of people, and  = height, and 
. 

.

(Ω, ℰ, P)
X : Ω → ΩX ΩX

{ω ∈ Ω ∣ X(ω) ∈ A} ∈ ℰ ∀A ∈ B(ΩX)

PX(A) = P({ω ∈ Ω ∣ X(ω) ∈ A})

Ω X(ω)
A = [5′ 1′ ′ ,5′ 2′ ′ ]

P(X ∈ A) = P(5′ 1′ ′ ≤ X ≤ 5′ 2′ ′ ) = P({ω ∈ Ω : X(ω) ∈ A})



Random Variables and Events

• A Boolean expression involving random variables defines an event: 
        E.g.,  

• Similarly, every event can be understood as a Boolean random variable: 

         

• From this point onwards, we will exclusively reason in terms of random 
variables

P(X ≥ 4) = P({ω ∈ Ω ∣ X(ω) ≥ 4})

Y = {1 if event A occurred
0 otherwise.



Example: Histograms
Consider the continuous commuting example again, with observations 12.345 
minutes, 11.78213 minutes, etc. 

 

• Question: What is the random variable? 

• Question: How could we turn our observations into a histogram?

.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24



Summary
• Probabilities are a means of quantifying uncertainty 

• A probability distribution is defined on a measurable space consisting of a 
sample space and an event space. 

• Discrete sample spaces (and random variables) are defined in terms of 
probability mass functions (PMFs) 

• Continuous sample spaces (and random variables) are defined in terms of 
probability density functions (PDFs) 

• Random variables let us reason about probabilistic questions at a more 
abstract level


