
Instructor: Vlad Tkachuk 

CMPUT 267  
Machine Learning I

Fall 2025
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Lectures will be streamed on 
Google Meet
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https://meet.google.com/enw-sthw-mvq


Lectures Will be Recorded and Made Public

• Lectures will be recorded 
• Recordings will be posted publicly to this YouTube Playlist 
• If you speak (ex: ask a question) in class your voice will be recorded 
• If you speak on Google Meet your voice and Google profile picture (or video if you 

have it on) will be recorded

3

https://youtube.com/playlist?list=PLv_4EzuTPftql9HplWsD-owf6BV2SELqI&feature=shared
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Last 2 lectures (Dec 2, 4) will be fully virtual. 
I will be away for a conference



There is a course website 
(vladtkachuk4.github.io/machinelearning1) 

These slides (and future) are posted there in the schedule tab
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https://vladtkachuk4.github.io/machinelearning1/
https://vladtkachuk4.github.io/machinelearning1/schedule.html


Course is based on the  
course notes 

They will be slightly updated throughout the term
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https://vladtkachuk4.github.io/machinelearning1/notes.pdf


Course Details

• Lectures: Tue & Thu 12:30pm - 1:50pm (CCIS 1-440 & Virtual) 
• Instructor: Vlad Tkachuk (email: vtkachuk@ualberta.ca) 
• Office Hours: Thu 2:00pm - 3:00pm (UCOMM 3-480)
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http://meet.google.com/enw-sthw-mvq
mailto:vtkachuk@ualberta.ca


TAs
TA email: cmput267@ualberta.ca

Name Day and Time Location

Het Patel Monday 9:00am - 10:00am Virtual

Kiarash Aghakasiri Monday 2:00pm - 3:00pm UCOMM 3-003

Alireza Kazemipour Monday 3:00pm - 4:00pm UCOMM 6-125

Ian Vyse Tuesday 9:00am - 10:00am Virtual

Guoqing Luo Tuesday 10:00am - 11:00am Virtual

Kushagra Chandak Wednesday 9:00am - 10:00am Virtual

Kaining Yang Wednesday 10:00am - 11:00am Virtual

Usaid Ahmed Wednesday 12:00pm - 1:00pm Virtual

Layne Pitman Thursday 11:00am - 12:00pm TBD

Vlad Tkachuk (Instructor) Thursday 2:00pm - 3:00pm UCOMM 3-480

Avani Tiwari Friday 9:00am - 10:00am Virtual

Sara Shehada Friday 11:00am - 12:00pm Virtual

Saksham Anand Friday 1:00pm - 2:00pm Virtual
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mailto:cmput267@ualberta.ca
http://meet.google.com/pgy-fxhh-xkp
http://meet.google.com/pgy-fxhh-xkp
http://meet.google.com/pgy-fxhh-xkp
http://meet.google.com/pgy-fxhh-xkp
http://meet.google.com/pgy-fxhh-xkp
http://meet.google.com/pgy-fxhh-xkp
http://meet.google.com/pgy-fxhh-xkp
http://meet.google.com/pgy-fxhh-xkp
http://meet.google.com/pgy-fxhh-xkp


Asking Questions and Getting Help

1. Ask an LLM (ex: ChatGPT). Fast responses and familiarizes you with LLMs. 
• IMPORTANT: LLM outputs should not be blindly trusted; students must verify information if unsure of 

its accuracy. 

2. Ask on Piazza (Note: you can ask questions anonymously) 
• Any questions that don’t reveal assignment solutions 

3. Email the TAs (cmput267@ualberta.ca) 
• For private assignment questions 

4. Email the instructor (vtkachuk@ualberta.ca) 
• Missing exams or personal issues
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https://chatgpt.com/
https://piazza.com/ualberta.ca/fall2024/cmput267
mailto:cmput267@ualberta.ca
mailto:vtkachuk@ualberta.ca


Join Piazza 
(Link also on the course website)
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https://piazza.com/ualberta.ca/fall2025/cmput267
https://vladtkachuk4.github.io/machinelearning1/


Grading

• At least 3 of the assignments will be coding assignments. We will be using Python 
in Google Colab. 

• To do the assignments you will need: An internet connection, and a modern web 
browser (Chrome, Firefox, or Safari recommended).
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Assessment Weight Date

Assignments (8, top 7 counted): 28% (4% each) See the schedule tab on the course website

Midterm exam 1: 21% Oct 7, 2025 in class (12:35pm - 1:45pm in CCIS 1-440)

Midterm exam 2: 21% Nov 18, 2025 in class (12:35pm - 1:45pm in CCIS 1-440)

Final exam 30% Dec 18, 2024 (8:30am), date and time are tentative

https://colab.research.google.com/
https://vladtkachuk4.github.io/machinelearning1/schedule/
https://www.ualberta.ca/en/registrar/examinations/exam-schedules/fall-winter-exam-planner.html


Course Policies

• We will not accept late assignments 
• If you are granted an excused absence for a midterm exam its weight will be 

transferred to the final exam 
• All assignments must be done by you 
• You can use AI (ex: LLMs) to help you with assignments  
• No cheating, plagiarism, harassment, physical assault, etc. 

• Can result in suspension or expulsion from the University  

• Familiarize yourself with the new Student Academic Integrity Policy
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https://www.ualberta.ca/en/alfresco/uappol/academic/student-academic-integrity/policy/student-academic-integrity-policy.pdf


Refer to the syllabus for 
detailed official course policies
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https://ualberta.simplesyllabusca.com/api2/doc-pdf/kmkbzxt3e/Fall-2025-CMPUT-267-A1-(54339)-MACHINE-LEARNING-I.pdf?locale=en-US


Advice: If you can do the assignment 
questions and examples in the course notes, 

then you are likely to succeed on the 
midterms and final exam

14



15

Disclaimer: This course is math heavy, 
and we do not cover “Deep Learning” 
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Disclaimer: This course is math heavy, 
and we do not cover “Deep Learning” 

However: Course notes are mostly self contained and 
I will try to motivate things as much as possible
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Necessary background: Can take derivatives (Calculus) 

Useful background: Probability and statistics, familiar with vectors and matrices (Lin Alg)

Disclaimer: This course is math heavy, 
and we do not cover “Deep Learning” 

However: Course notes are mostly self contained and 
I will try to motivate things as much as possible



Please ask questions! 

Especially: “Why are we doing this?”
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Course Outline

1. Math and probability review 

2. Define supervised learning formally (splitting it into regression or classification) 

3. Design some learning programs to solve regression problems 

Midterm Exam 1 

4. Evaluate our learning programs 

5. Present some new ways to design learning programs for regression 

Midterm Exam 2 

6. Repeat the above for classification problems 

7. Brief intro to neural networks and language models 

Final Exam (Cumulative)
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Raise your hand if you’re in  
1st year
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Raise your hand if you’re in  
2nd year
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Raise your hand if you’re in  
3rd year
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Raise your hand if you’re in  
4th year
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Raise your hand if you’re a  
Grad student
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What is Machine Learning?
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What is Machine Learning?
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Remaining slides are inspired by: Shai Ben-David (Lecture 1 - CS 485/685)

https://www.youtube.com/watch?v=b5NlRg8SjZg&list=PLPW2keNyw-usgvmR7FTQ3ZRjfLs5jT4BO&index=4


Raise your hand if you think you 
know what Machine Learning is
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Raise your hand if you learned 
about machine learning before 
(ex: taken a course, watched videos, etc.)
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Raise your hand if you’ve 
heard of: 

29



Raise your hand if you use: 
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Raise your hand if you think 
Machine Learning is exciting
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What is Machine Learning?
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What is Machine Learning? 

Answer: A program/algorithm 
that is learning
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What is Learning?
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Experience
Learning 

Knowledge



Example: Pavlov’s Dog
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Experience
Learning 

Knowledge



Example: Pavlov’s Dog
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Experience
Learning 

Knowledge



Example: Learning to Play Tennis
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Experience

Learning 

Knowledge



Example: Learning to Play Tennis
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Experience

Learning 

Knowledge Coordination, 
Ball control



Example: Learning to Play Tennis
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Experience

Learning 

Knowledge

Unsupervised Learning

Coordination, 
Ball control



Example: Learning to Play Tennis
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Experience

Learning 

Knowledge

Unsupervised Learning

Coordination, 
Ball control



Example: Learning to Play Tennis
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Experience

Learning 

Knowledge

Unsupervised Learning

Coordination, 
Ball control How to play



Example: Learning to Play Tennis
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Experience

Learning 

Knowledge

Unsupervised Learning Supervised Learning

Coordination, 
Ball control How to play



Example: Learning to Play Tennis
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Experience

Learning 

Knowledge

Unsupervised Learning Supervised Learning

Coordination, 
Ball control How to play



Example: Learning to Play Tennis
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Experience

Learning 

Knowledge

Unsupervised Learning Supervised Learning

Coordination, 
Ball control How to play How to play



Example: Learning to Play Tennis
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Experience

Learning 

Knowledge

Unsupervised Learning Supervised Learning Reinforcement Learning

Coordination, 
Ball control How to play How to play



Example: Learning Language
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Experience

Learning 

Knowledge



Example: Learning Language
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Experience

Learning 

Knowledge



Example: Learning Language
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Experience

Learning 

Knowledge

Offline (Batch) Learning



Example: Learning Language
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Experience

Learning 

Knowledge

Offline (Batch) Learning



Example: Learning Language
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Experience

Learning 

Knowledge

Offline (Batch) Learning



Example: Learning Language
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Experience

Learning 

Knowledge

Offline (Batch) Learning



Example: Learning Language
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Experience

Learning 

Knowledge

Offline (Batch) Learning Online Learning



Example: Games
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Experience

Learning 

Knowledge



Example: Games
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Experience

Learning 

Knowledge



Example: Games
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Experience

Learning 

Knowledge

Stochastic Learning



Example: Games
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Experience

Learning 

Knowledge

Stochastic Learning



Example: Games
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Experience

Learning 

Knowledge

Stochastic Learning



Example: Games
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Experience

Learning 

Knowledge

Stochastic Learning Adversarial Learning



Different Kinds of Learning
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Unsupervised Learning Supervised Learning Reinforcement Learning

Offline (Batch) Learning Online Learning

Stochastic Learning Adversarial Learning



Reinforcement Learning
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Unsupervised Learning Supervised Learning

Offline (Batch) Learning Online Learning

Stochastic Learning Adversarial Learning

Supervised, Offline, Stochastic Learning

What we Will Cover



Reinforcement Learning
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Unsupervised Learning Supervised Learning

Offline (Batch) Learning Online Learning

Stochastic Learning Adversarial Learning

Supervised Learning = Supervised, Offline, Stochastic Learning

What we Will Cover



Reinforcement Learning
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Unsupervised Learning Supervised Learning

Offline (Batch) Learning Online Learning

Stochastic Learning Adversarial Learning

What we Will Cover

Supervised Learning = Learning from a batch of labeled randomly                                    
                                       selected experience
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Supervised Learning = Learning from a batch of labeled randomly                                    
                                       selected experience

Experience
Learning 

Knowledge

Spam 
Detector

Example: Spam Detector



Why are machines 
(programs) that learn useful? 

(instead of just having humans)
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Why are Programs Useful?

Programs can perform computations much more efficiently than humans 
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Programs can perform computations much more efficiently than humans  

Examples:  
• A calculator can do math faster than humans
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Why are Programs Useful?



Programs can perform computations much more efficiently than humans  

Examples:  
• A calculator can do math faster than humans 
• Excel can plot some data faster than a human
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Why are Programs Useful?



Programs can perform computations much more efficiently than humans  

Examples:  
• A calculator can do math faster than humans 
• Excel can plot some data faster than a human 
• Google Maps can plan a driving route faster than a human
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Why are Programs Useful?



Programs can perform computations much more efficiently than humans  

Examples:  
• A calculator can do math faster than humans 
• Excel can plot some data faster than a human 
• Google Maps can plan a driving route faster than a human 
• Google Docs can count the number of words in a document faster than a 

human
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Why are Programs Useful?



Programs can perform computations much more efficiently than humans  

Examples:  
• A calculator can do math faster than humans 
• Excel can plot some data faster than a human 
• Google Maps can plan a driving route faster than a human 
• Google Docs can count the number of words in a document faster than a 

human 
• etc.
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Why are Programs Useful?



Classic Programs
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Human writes code Knowledge (program)



Classic Programs

Example: A human writes a calculator program. 
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Human writes code Knowledge (program)



Programs that Learn
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Experience
Learning (program)

Knowledge (program)



Programs that Learn
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Experience
Learning (program)

Example: A calculator learns addition by seeing examples 
of numbers being added together.

Knowledge (program)



1. We don’t know how to write the code for 
certain types of knowledge  
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Why are Programs that Learn Useful?



1. We don’t know how to write the code for 
certain types of knowledge   

Examples: 

• Creating an image of something  

77

Why are Programs that Learn Useful?



1. We don’t know how to write the code for 
certain types of knowledge   

Examples: 

• Creating an image of something  

“Generate an image of a cat”
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Why are Programs that Learn Useful?



1. We don’t know how to write the code for 
certain types of knowledge   

Examples: 

• Creating an image of something  

“Generate an image of a person that 
can not explain the steps to draw a cat”
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Why are Programs that Learn Useful?



1. We don’t know how to write the code for 
certain types of knowledge   

Examples: 

• Creating an image of something  

“Generate an image of a person that 
can not explain the steps to draw a cat”
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Why are Programs that Learn Useful?



1. We don’t know how to write the code for 
certain types of knowledge   

Examples: 

• Creating an image of something  

“Generate an image of a person that 
can not explain the steps to draw a cat”
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Why are Programs that Learn Useful?

All of the images in this 
presentation were generated by



1. We don’t know how to write the code for 
certain types of knowledge   

Examples: 

• Creating an image of something  

“Generate an image of a person that 
can not explain the steps to draw a cat” 

• Object detection: stop sign, pedestrian, 
red light, green light, etc.
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Why are Programs that Learn Useful?

All of the images in this presentation were 
generated by



More examples: 

• Chatbot (LLMs: ChatGPT, Claude, Gemini, etc.)
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Why are Programs that Learn Useful?



More examples: 

• Chatbot (LLMs: ChatGPT, Claude, Gemini, etc.) 
• Discovery: Predicting protein folding (Deepmind’s Alphafold).
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Amino acid chain

Folding

Protein

Why are Programs that Learn Useful?



2. Can adapt to changing environments 
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Why are Programs that Learn Useful?



2. Can adapt to changing environments 

Example: 

• Object detection, but at night time
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Day time

Why are Programs that Learn Useful?



2. Can adapt to changing environments 

Example: 

• Object detection, but at night time
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Day time

Night time

Why are Programs that Learn Useful?



What will you learn in this 
course?
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Reinforcement Learning
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Unsupervised Learning Supervised Learning

Offline (Batch) Learning Online Learning

Stochastic Learning Adversarial Learning

What we Will Cover

Supervised Learning = Learning from a batch of labeled randomly                                    
                                       selected experience



You will learn to write a 
program that learns
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Experience
Learning (program)

Knowledge (program)



You will learn to write a 
program that learns
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Experience
Learning (program)

Knowledge (program)
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Experience
Learning (program)

Knowledge (program)

Human writes code Knowledge (program)

You will learn to write a 
program that learns
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Experience Knowledge (program)

You 
write 
code

Learning program

You will learn to write a 
program that learns



Examples of what that looks 
like
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Example: Predicting House Prices Based on # of Rooms
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# Of Rooms Price

2 $200k

4 $590k

3 $350k

7 $970k



Example: Predicting House Prices Based on # of Rooms
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Experience
Learning (program)

Knowledge (program)

# Of Rooms Price

2 $200k

4 $590k

3 $350k

7 $970k



Example: Predicting House Prices Based on # of Rooms
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Experience
Learning (program)

Knowledge (program)

Prediction function  : 

Input: # of rooms  

Output: price 

Example: 

f

f(5) = $700k

# Of Rooms Price

2 $200k

4 $590k

3 $350k

7 $970k



Example: Predicting House Prices Based on # of Rooms
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Experience Knowledge (program)

Prediction function  : 

Input: # of rooms  

Output: price 

Example: 

f

f(5) = $700k

Objective: 

Write a learning program that 
outputs a predictor  , 

such that,  can predict the 
price of any unseen house

f

f

# Of Rooms Price

2 $200k

4 $590k

3 $350k

7 $970k

Learning program

Learning program



Example: Predicting House Prices Based on # of Rooms
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Experience Knowledge (program)

Prediction function  : 

Input: # of rooms  

Output: price 

Example: 

f

f(5) = $700k

Objective: 

Write a learning program that 
outputs a predictor  , 

such that,  can predict the 
price of any unseen house

f

f

# Of Rooms Price

2 $200k

4 $590k

3 $350k

7 $970k

Learning program

Learning program

Supervised Learning = Learning from a batch of labeled randomly                                    
                                       selected experience
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Experience Knowledge (program)

Example: Predicting House Prices Based on # of Rooms

Learning program
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Experience Knowledge (program)

Example: Predicting House Prices Based on # of Rooms
Learning 
program 
(simple)

Learning program
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Learning program
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Experience Knowledge (program)

New 
Experience

Example: Predicting House Prices Based on # of Rooms
Learning 
program 
(simple)

Learning 
program 

(Complex)

Learning program

Complex predictor is a 
Neural Network 



Example: Classifying Wine Based on Chemical Properties
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Proline Flavanoid Type

2.3 3.4 Barolo

1.6 0.8 Not Barolo

2.8 3.5 Barolo

...
...

...



Example: Classifying Wine Based on Chemical Properties

107

Experience Knowledge (program)

Proline Flavanoid Type

2.3 3.4 Barolo

1.6 0.8 Not Barolo

2.8 3.5 Barolo

...
...

...

Learning (program)



Example: Classifying Wine Based on Chemical Properties
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Experience Knowledge (program)

Prediction function  : 

Input: Proline, Flavanoid 

Output: Type of wine 

Example: 

f

f(3,3) = Barolo

Proline Flavanoid Type

2.3 3.4 Barolo

1.6 0.8 Not Barolo

2.8 3.5 Barolo

...
...

...

Learning (program)



Example: Classifying Wine Based on Chemical Properties
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Experience Knowledge (program)

Prediction function  : 

Input: Proline, Flavanoid 

Output: Type of wine 

Example: 

f

f(3,3) = Barolo

Objective: 

Write a learning program that 
outputs a predictor ,  

such that,  can predict the type 
of any unseen wine

f

f

Proline Flavanoid Type

2.3 3.4 Barolo

1.6 0.8 Not Barolo

2.8 3.5 Barolo

...
...

...

Learning program

Learning program



Example: Classifying Wine Based on Chemical Properties
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Experience Knowledge (program)

Prediction function  : 

Input: Proline, Flavanoid 

Output: Type of wine 

Example: 

f

f(3,3) = Barolo

Objective: 

Write a learning program that 
outputs a predictor ,  

such that,  can predict the type 
of any unseen wine

f

f

Proline Flavanoid Type

2.3 3.4 Barolo

1.6 0.8 Not Barolo
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...
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Learning program

Supervised Learning = Learning from a batch of labeled randomly                                    
                                       selected experience



Example: Classifying Wine Based on Chemical Properties
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Experience Knowledge (program)
Learning program



Example: Classifying Wine Based on Chemical Properties
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Example: Classifying Wine Based on Chemical Properties
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Example: Classifying Wine Based on Chemical Properties
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Experience
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Example: Classifying Wine Based on Chemical Properties
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Experience Knowledge (program)

New 
Experience

Learning 
program 
(simple)

Learning 
program 

(Complex)

Learning program



Regression vs Classification

Regression: Labels are ordered (usually continuous) values (ex: house prices) 

Classification: Labels are discrete and unordered (ex: type of wine)
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Course Outline

1. Math and probability review 

2. Define supervised learning formally (splitting it into regression or classification) 

3. Design some learning programs to solve regression problems 

Midterm Exam 1 

4. Evaluate our learning programs 

5. Present some new ways to design learning programs for regression 

Midterm Exam 2 

6. Repeat the above for classification problems 

7. Brief intro to neural networks and language models 

Final Exam (Cumulative)
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The code for all of the plots 
was generated by 
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Wait a Minute…
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Learning program



Wait a Minute…
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Experience Knowledge (program)
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Learning program



Wait a Minute…
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Some other 
Experience

Some other 
Learning

Experience Knowledge (program)

writes 
code

Learning program
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Wait a Minute…
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Some other 
Experience

Some other 
Learning program

Experience Knowledge (program)

writes 
code

Learning program

122

Some 
Humans 
wrote 
code



Why should you learn to write 
programs that can learn, 

If another program (ex: Claude) 
can do it for you?
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My Answer: 
1. If something doesn’t work, then you can fix it 

Why should you learn to write 
programs that can learn, 

If another program (ex: Claude) 
can do it for you?
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My Answer: 
1. If something doesn’t work, then you can fix it 
2. Its fun and feels like magic :)

Why should you learn to write 
programs that can learn, 

If another program (ex: Claude) 
can do it for you?


