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Example 6.18: Let n =8,b =2 then M = 8/2 = 4, and the dataset can be visualized as

neq b=t M= floor(U2)= Y
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For each mini-batch m € {1,..., M} we have a sample mean estimate of the expected
loss
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During an epoch t, the MBGD learner updates the weight vector w for each mini-batch

m € {1,..., M} using the update rule
wtm+D) () _(OF ], (wltm)).

Once the final mini-batch M is reached, the learner updates the weight vector w for the
next epoch t + 1 using the update rule

WL = M) _ (O, g M)y

The MBGD learner A : (X x V)" — F is defined in algorithm 3.
A(D) = f where f(x)=x wTM),



Algorithm 3: MBGD Linear Regression Learner (with a constant step size)

1: input:
D= ((x1,Y1),---,(Xn,Yn)), step size , number of epochs T, mini-batch size b
w « random vector in R4+
M <« floor(%)
fort=1,...,7T do
randomly shuffle D
forn}: 1,...,M do
VLp(w) % E?;b(m—l)b—i-l (X;rw — Yi)Xi
W < W — )V L (W)
return f(x) = x!Ww
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Exercise 6.1: You are minimizing a function ¢ : R? — R by using gradient descent
with an initial point w(© and step size n(t) = n for all ¢ € N. You run gradient descent
for T' = 10° iterations and get the parameter w(7). Can you be certain that w(”)
argming, cra g(w)? O
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Exercise 6.2:  Suppose you are using an exponential decaying step size. Is there some
way to set the parameters n and A so that you are using a constant step size? O
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Exercise 6.3:

(7 — »)*? In the 1-dimensional case, with no bias term (i.e. w € R), is L(w) convex?
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What would the BGD update rule be if we used the loss function £(7,y) =
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Exercise 6.4: Write the pseudocode for BGD with an exponential decaying step size. [J

Algorithm 5: BGD Linear Regression Learner (with an exponential decaying step
size)

1: input: D = ((x1,y1),-..,(Xn,yn)), step size parameters ny, A, number of epochs T
2. w < random vector in R4H+!

3: for+—t+t—""T do 'Fof t=0,

1. VL(w) + %Z? V(xS wW — )X,

5:2) 1 < 1Mo exp(—{\t) &’—* ne W S?I 7[‘7[

i ww—nVL(w)

. return  f(x) = xTw(®)
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Exercise 6.5:  Suppose that we did not discard the last n — Mb data points from the
dataset, and instead used them in the last mini-batch M + 1. What would the sample mean

estimate I:MH(W) be? O
A 1 mb ‘ .
Lm(w) = 5 Z (xiTw_y'i)z' ! ’F (44 6 Z ’ ) Ty N?
i=(m—1)b+1

7’) ot om=Ml and % not inf



Exercise 6.6: If f3 € F3, can we be certain that f3 € F5 or that f3 € F47

[Va w < c,av»\l‘ be cct//*qlﬂ {;é 7};
\{ch we can be certan ‘(367:;

I;\
Sufipeos< Lo=¢a ¢ F,



Exercise 6.7: Let d =3, and p = 2. What is p? Write the feature map ¢,(x). [
P=(4P)-[s) - =4 1p
pJ) \*/ " ]
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Exercise 6.8: Suppose that
Fp={f|f : R 5 R, and f(x) = exp(¢p(x)'w), for some w € RP}.
p =1/l es (x) (¢p(x) W) }

Is it true that F, C Fy? Is it true that F, € F,? Is it true that F; € F;? Is it true that

min ¢ 7, L(f) < min . 7, L(f)? 7\ !'\0 "\ no O
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Exercise 6.9: Suppose you want to find fi = minser, L(f), and fo = minser, L(f). To
do this you decide to use batch gradient descent. Let f/p(w) = rll " (op(xi)Tw — yi)
You run BGD on the function L;(w) for T = 100 epochs, and get wg % You run BGD
on the function Ly(w) for T = 1000 epochs, and get ngooo). You are told that for both
cases the number of iterations 7" that BGD is run for is likely enough for it to reach a good

approximation of the minimizer.

Can you be certain that Li(w; (100) ) > La(w (1000)). Do you think it is likely that
> 100) 1000
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Exercise 6.10: Write the pseudocode for the degree 3 polynomial feature map ¢3(x). [

Algorithm 6: Degree 3 Polynomial Feature Map

1: input: feature vector x = (zg = 1,21,...,24)" € RIH!
2 p (d+1)(d+2)(d+3)/6 & new

3: gp(—(990=0,991=0,...,9913_1=0)TGRﬁ

4: 70

5. for k=0,...,d do

6: forl=k,...,ddo +

7. forq=1,...,ddo & New PAV

8: Yj = T - Xy /

9: j=7+1
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S

return ¢




