## Mini-Butch Gradient Descent (MBBD) Review

**Example 6.18:** Let n = 8, b = 2 then M = 8/2 = 4, and the dataset can be visualized as

$$\mathcal{D} = \left( \underbrace{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2)}_{\text{mini-batch 1}}, \underbrace{(\mathbf{x}_3, y_3), (\mathbf{x}_4, y_4)}_{\text{mini-batch 2}}, \underbrace{(\mathbf{x}_5, y_5), (\mathbf{x}_6, y_6)}_{\text{mini-batch 3}}, \underbrace{(\mathbf{x}_7, y_7), (\mathbf{x}_8, y_8)}_{\text{mini-batch 4}} \right).$$

For each mini-batch  $m \in \{1, ..., M\}$  we have a sample mean estimate of the expected loss

$$\hat{L}_{m}(\mathbf{w}) = \frac{1}{b} \sum_{i=(m-1)b+1}^{mb} (\mathbf{x}_{i}^{\top} \mathbf{w} - y_{i})^{2}.$$

$$\nabla \mathcal{L}_{m}(\mathbf{w}) = \frac{2}{b} \underbrace{\sum_{i=(m-1)b+1}^{mb} (\mathbf{x}_{i}^{\top} \mathbf{w} - y_{i}) \mathbf{x}_{i}^{\top}}_{\mathbf{x}_{i}^{\top} \mathbf{w}^{\top} \mathbf{y}_{i}^{\top} \mathbf{x}_{i}^{\top} \mathbf{w}^{\top} \mathbf{y}_{i}^{\top} \mathbf{x}_{i}^{\top} \mathbf{x}_{i}$$

During an epoch t, the MBGD learner updates the weight vector  $\mathbf{w}$  for each mini-batch  $m \in \{1, \dots, M\}$  using the update rule

$$\mathbf{w}^{(t,m+1)} = \mathbf{w}^{(t,m)} - \eta^{(t)} \nabla \hat{L}_m(\mathbf{w}^{(t,m)}).$$

Once the final mini-batch M is reached, the learner updates the weight vector  $\mathbf{w}$  for the next epoch t+1 using the update rule

$$\mathbf{w}^{(t+1,1)} = \mathbf{w}^{(t,M)} - \eta^{(t)} \nabla \hat{L}_m(\mathbf{w}^{(t,M)}).$$

The MBGD learner  $\mathcal{A}: (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{F}$  is defined in algorithm 3.

$$\mathcal{A}(\mathcal{D}) = \hat{f}$$
 where  $\hat{f}(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{w}^{(T,M)}$ .

## Algorithm 3: MBGD Linear Regression Learner (with a constant step size)

```
1: input:
\mathcal{D} = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)), \text{ step size } \eta, \text{ number of epochs } T, \text{ mini-batch size } b
2: \mathbf{w} \leftarrow \text{random vector in } \mathbb{R}^{d+1}
3: M \leftarrow \text{floor}(\frac{n}{b})
4: \mathbf{for } t = 1, \dots, T \mathbf{do}
5: randomly shuffle \mathcal{D}
6: \mathbf{for } m = 1, \dots, M \mathbf{do}
7: \nabla \hat{L}_m(\mathbf{w}) \leftarrow \frac{2}{b} \sum_{i=(m-1)b+1}^{mb} (\mathbf{x}_i^\top \mathbf{w} - y_i) \mathbf{x}_i
8: \mathbf{w} \leftarrow \mathbf{w} - \eta \nabla \hat{L}_m(\mathbf{w})
9: \mathbf{return } \hat{f}(\mathbf{x}) = \mathbf{x}^T \hat{\mathbf{w}}
```

TM gradient steps

**Exercise 6.1:** You are minimizing a function  $g : \mathbb{R}^d \to \mathbb{R}$  by using gradient descent with an initial point  $\mathbf{w}^{(0)}$  and step size  $\eta^{(t)} = \eta$  for all  $t \in \mathbb{N}$ . You run gradient descent for  $T = 10^6$  iterations and get the parameter  $\mathbf{w}^{(T)}$ . Can you be certain that  $\mathbf{w}^{(T)} = \mathbf{w}^* = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} g(\mathbf{w})$ ?



**Exercise 6.2:** Suppose you are using an exponential decaying step size. Is there some way to set the parameters  $\eta$  and  $\lambda$  so that you are using a constant step size?

$$n^{(t)} = n \exp(-nt)$$
 exp decay set  $n = 0$ 

$$n^{(t)} = n$$

$$const$$

$$= 1$$

**Exercise 6.3:** What would the BGD update rule be if we used the loss function  $\ell(\hat{y}, y) = (\hat{y} - y)^4$ ? In the 1-dimensional case, with no bias term (i.e.  $w \in \mathbb{R}$ ), is  $\hat{L}(w)$  convex?

$$\vec{W}^{(t+1)} = \vec{W}^{(t)} - \gamma^{(t)} \nabla \hat{L}(\vec{w}^{(t)})$$

$$\hat{L}(\vec{w}) = \frac{1}{n} \lesssim L(\vec{x}_{i}^{\dagger} \vec{w}_{j}, y_{i}) = \frac{1}{n} \lesssim (\vec{x}_{i}^{\dagger} \vec{w}_{j} - y_{i})^{4}$$

$$\nabla \hat{L}(\vec{w}) = \left(\frac{\partial \hat{L}}{\partial w_{0}}(\vec{w}), \frac{\partial \hat{L}}{\partial w_{d}}(\vec{w})\right)^{T} \in \mathbb{R}^{d+1}$$

$$\frac{\partial \widehat{L}}{\partial w_{j}}(\overrightarrow{w}) = \frac{1}{n} \stackrel{\wedge}{\leq} \frac{\partial \left((\overset{\wedge}{\chi}_{i}^{T} \overrightarrow{w} - y_{i})^{T}\right)}{\partial w_{j}} (\overrightarrow{w})$$

$$= \frac{1}{n} \sum_{i=1}^{n} 4 \left( \hat{X}_{i}^{T} \vec{w} - y_{i} \right)^{3} X_{ij}$$

$$\nabla \hat{L}(\vec{\omega}) = \frac{4}{n} \sum_{i=1}^{n} (\hat{X}_{i}^{T} \vec{\omega} - \hat{y}_{i}^{T}) \left( \hat{X}_{io}, \dots, \hat{X}_{id} \right)^{T}$$

$$\frac{\epsilon R^{dH}}{\tilde{W}^{(\epsilon+1)}} = \frac{4}{\tilde{N}} \underbrace{\sum_{i=1}^{K} (\tilde{X}_{i}^{T} \tilde{W} - \tilde{y}_{i}^{1}) \tilde{X}_{i}^{T}}_{i=1} (\tilde{X}_{i}^{T} \tilde{W} - \tilde{y}_{i}^{1}) \tilde{X}_{i}^{T}}_{i=1} (\tilde{X}_{i}^{T} \tilde{W} - \tilde{y}_{i}^{1}) \tilde{X}_{i}^{T}} \in \mathbb{R}^{dH}$$

1-D case 
$$\frac{d\hat{L}}{dw}(w) = \frac{4}{n} \sum_{i=1}^{n} (x_i w - y_i)^3 X_i$$

$$\frac{d^2 \hat{L}}{dw^2}(w) = \frac{4}{n} \sum_{i=1}^{n} \frac{d((x_i w - y_i)^3 X_i)}{dw}(w)$$

$$= \frac{4.3}{n} \sum_{i=1}^{n} (x_{1}w-y_{i})^{2} x_{i} x_{i}$$

$$= \frac{12}{n} \sum_{i=1}^{n} (x_{1}w-y_{i})^{2} x_{i} x_{i} \ge 0$$

$$f(o) = b = w$$

$$with bias$$

$$w_1 = mx + b$$

$$w_2 = mx + b$$

$$w_3 = mx + b$$

$$w_4 = mx + b$$

$$w_5 = mx + b$$

$$w_6 = mx + b$$

$$w_6 = mx + b$$

$$w_7 = mx + b$$

$$w_8 = mx + b$$

$$w_9 = m$$

Algorithm 5: BGD Linear Regression Learner (with an exponential decaying step size)

- 1: **input:**  $\mathcal{D} = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n))$ , step size parameters  $\eta_0, \lambda$ , number of epochs T
- 2:  $\mathbf{w} \leftarrow \text{random vector in } \mathbb{R}^{d+1}$

- 3:  $\frac{\text{for } t = 1, \dots, T \text{ do}}{4: \quad \nabla \hat{L}(\mathbf{w}) \leftarrow \frac{2}{n} \sum_{i=1}^{n} (\mathbf{x}_{i}^{\top} \mathbf{w} y_{i}) \mathbf{x}_{i}}$ 5:  $\frac{1}{n} \leftarrow \eta_{0} \exp(-\lambda t) \leftarrow ne \quad \text{of } \mathbf{x} \neq \mathbf{x}_{i}$ 6:  $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla \hat{L}(\mathbf{w})$
- 7: **return**  $\hat{f}(\mathbf{x}) = \mathbf{x}^T \hat{\mathbf{w}}^{(T)}$

$$\mathcal{I}^{(t)} = \mathcal{I} \exp(-\lambda t)$$

Suppose that we did not discard the last n-Mb data points from the Exercise 6.5: dataset, and instead used them in the last mini-batch M+1. What would the sample mean estimate  $\hat{L}_{M+1}(\mathbf{w})$  be?

$$\hat{L}_m(\mathbf{w}) = \frac{1}{b} \sum_{i=(m-1)b+1}^{mb} (\mathbf{x}_i^\top \mathbf{w} - y_i)^2. \qquad \text{if} \quad m \in \{1, ..., M\}$$

$$\hat{L}_{m}(\mathbf{w}) = \frac{1}{b} \sum_{i=(m-1)b+1}^{mb} (\mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} - y_{i})^{2}. \quad \text{if } m \in \{1, ..., M\}$$

$$\hat{L}_{M+1}(\vec{w}) = \frac{1}{\mathsf{n}-\mathsf{M}b} \sum_{i=Mb+1}^{\mathsf{M}} (\vec{\mathbf{X}}_{i}^{\mathsf{T}} \vec{\mathbf{w}} - y_{i})^{2} \quad \text{if } m = M+1 \quad \text{and} \quad \frac{\mathsf{n}}{\mathsf{b}} \quad \text{not int}$$

**Exercise 6.6:** If  $f_3 \in \mathcal{F}_3$ , can we be certain that  $f_3 \in \mathcal{F}_2$  or that  $f_3 \in \mathcal{F}_4$ ?

No we can't be certain  $f_3 \in \mathcal{F}_2$ .
Yes we can be certain  $f_3 \in \mathcal{F}_4$ 

suppose  $f_3(x)=x^3$ .1  $x^3 \notin F_2$ 

**Exercise 6.7:** Let d=3, and p=2. What is  $\bar{p}$ ? Write the feature map  $\phi_p(\mathbf{x})$ .

$$\overline{P} = \begin{pmatrix} d+p \\ p \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \frac{5\cdot 4}{2} = 10$$

$$\overline{X} = (\chi_{\overline{o}}^{1}, \chi_{1}, \chi_{2}, \chi_{3})^{T}$$

$$\Phi_{2}(\bar{x}) = (1, X_{1}, X_{2}, X_{3}, X_{1}^{2}, X_{1}, X_{2}, X_{1}, X_{3}, X_{2}^{2}, X_{2}, X_{3}, X_{3}^{2})$$

## Exercise 6.8: Suppose that

 $\bar{\mathcal{F}}_p = \{f | f : \mathbb{R}^{d+1} \to \mathbb{R}, \text{ and } f(\mathbf{x}) = \exp(\phi_p(\mathbf{x})^\top \mathbf{w}), \text{ for some } \mathbf{w} \in \mathbb{R}^{\bar{p}} \}.$ 

Is it true that  $\bar{\mathcal{F}}_1 \subset \bar{\mathcal{F}}_2$ ? Is it true that  $\mathcal{F}_1 \subset \bar{\mathcal{F}}_1$ ? Is it true that  $\bar{\mathcal{F}}_1 \subset \mathcal{F}_1$ ? Is it true that  $\min_{f \in \bar{\mathcal{F}}_1} \hat{L}(f) \leq \min_{f \in \bar{\mathcal{F}}_2} \hat{L}(f)$ ?

if 
$$f_z^* = \underset{f \in \overline{E}}{\operatorname{argmin}} \hat{L}(f) \notin \mathcal{F}$$

$$\hat{L}(f^*z) = \min_{f \in \overline{F}_n} \hat{L}(f) \leq \min_{f \in \overline{F}_n} \hat{L}(f)$$

**Exercise 6.9:** Suppose you want to find  $\hat{f}_1 = \min_{f \in \mathcal{F}_1} \hat{L}(f)$ , and  $\hat{f}_2 = \min_{f \in \mathcal{F}_2} \hat{L}(f)$ . To do this you decide to use batch gradient descent. Let  $\hat{L}_p(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n (\phi_p(\mathbf{x}_i)^\top \mathbf{w} - y_i)^2$ . You run BGD on the function  $\hat{L}_1(\mathbf{w})$  for T = 100 epochs, and get  $\mathbf{w}_1^{(100)}$ . You run BGD on the function  $\hat{L}_2(\mathbf{w})$  for T = 1000 epochs, and get  $\mathbf{w}_2^{(1000)}$ . You are told that for both cases the number of iterations T that BGD is run for is likely enough for it to reach a good approximation of the minimizer.

$$f_{1}(\vec{x}) = \phi_{1}(\vec{x})^{T} \vec{w}_{1} = \vec{x}^{T} \vec{w}_{2} \Rightarrow \vec{w}_{1} \in \mathbb{R}^{d+1}$$

$$f_{2}(\vec{x}) = \phi_{2}(\vec{x})^{T} \vec{w}_{2} \Rightarrow \vec{w}_{2} \in \mathbb{R}^{p}$$

$$\vec{p} = \begin{pmatrix} d^{+2} \\ 2 \end{pmatrix}$$

**Exercise 6.10:** Write the pseudocode for the degree 3 polynomial feature map  $\phi_3(\mathbf{x})$ .  $\square$ 

## Algorithm 6: Degree 3 Polynomial Feature Map

```
1: input: feature vector \mathbf{x} = (x_0 = 1, x_1, \dots, x_d)^{\top} \in \mathbb{R}^{d+1}

2: \bar{p} \leftarrow (d+1)(d+2)(d+3)/6 \leftarrow \text{New}

3: \varphi \leftarrow (\varphi_0 = 0, \varphi_1 = 0, \dots, \varphi_{\bar{p}-1} = 0)^{\top} \in \mathbb{R}^{\bar{p}}

4: j \leftarrow 0

5: for k = 0, \dots, d do

6: for l = k, \dots, d do

7: for q = l, \dots, d do

8: \varphi_j = x_k \cdot x_l \cdot \hat{x_q}

9: j = j + 1

10: return \varphi
```