Exercise 1: What do the elements of the set \mathbb{R}^3 look like? **Exercise 2:** What do the elements of the set $(\mathbb{R}^2) \times \{0,1\}$ look like? **Exercise 3:** If $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} \subseteq \mathbb{R}$, then is $(\mathcal{X} \times \mathcal{Y})^n$ a set or a tuple? **Exercise 4:** If $\mathcal{X} \in \mathbb{R}^d$ and $\mathcal{Y} \in \mathbb{R}$, then what does an element of $\mathcal{X} \times \mathcal{Y}$ look like? **Exercise 5:** If $\mathcal{X} \in \mathbb{R}^d$ and $\mathcal{Y} \in \mathbb{R}$, then what does an element of $(\mathcal{X} \times \mathcal{Y})^n$ look like? Ex 1: R x R x R = {(a,b,c) | a e R, b e R, c E R } = { (a, b, c) | a, b, c 6 R3 $(1,2,3) \in \mathbb{R}^3$, $(\pi,-3,\frac{1}{4}) \in \mathbb{R}^3$, $(1,2) \notin \mathbb{R}^3$ Ex 2: (R2) × 40,13 = {(a,b)) a ∈ R, b ∈ R3 × 40,13 = \((a,b), c) | a \(\mathbb{R}, \mathbb{R}, \ce\{0,13\} 7 2 ((a,b), 40,13) | a & R, b & R3 $((1,2),0),((0,2.7),1),((0,2.7),0) \in \mathbb{R}^2 \times 50.13$ $\underline{\vdash \times 3} \cdot (\chi \times y)' = (\chi \times y) \times (\chi \times y) \times ... \times (\chi \times y) : \epsilon_{N,i>0}$ $: \epsilon_{X} \times (\chi \times y)' = (\chi \times y) \times (\chi \times y) \times ... \times (\chi \times y) : \epsilon_{N,i>0}$ = $\{(Z_1, Z_2, ..., Z_n) | Z_1 \in \chi_{\chi_1} \times \chi_{\chi_2} \in \{1, ..., n\} \}$ Set of all a dataset Datasets $f: R \Rightarrow R$ $A:(\chi \times y)^n \Rightarrow \text{ a feature-label pair}$ A(D) = f $f(x) = x^2$

Exercise 4: If $\mathcal{X} \in \mathbb{R}^d$ and $\mathcal{Y} \in \mathbb{R}$, then what does an element of $\mathcal{X} \times \mathcal{Y}$ look like?

Exercise 5: If $\mathcal{X} \in \mathbb{R}^d$ and $\mathcal{Y} \in \mathbb{R}$, then what does an element of $(\mathcal{X} \times \mathcal{Y})^n$ look like?

$$\underbrace{\mathbb{E}_{x} \, \Psi: \, \mathcal{X} = \mathbb{R}^{d}, \, \mathcal{Y} = \mathbb{R}}_{\mathcal{X} \times \mathcal{Y} = (\mathbb{R}^{d}) \times \mathbb{R}} \\
= \left\{ \left(x, y \right) \middle| x \in \mathbb{R}^{d}, \, y \in \mathbb{R} \right\} \\
= \left\{ \left(\left(x_{1}, x_{2}, \dots, x_{d} \right), \, y \right) \middle| x_{1}, x_{2}, \dots, x_{d}, \, y \in \mathbb{R} \right\} \\
\left(\left(\left(x_{1}, \dots, x_{d} \right), \, y \right) \in \mathcal{X} \times \mathcal{Y} \quad \times_{1, \dots, x_{d}, y} \in \mathbb{R} \\
\left(\left(\left(x_{1}, \dots, x_{d} \right), \, y \right) \in \mathcal{X} \times \mathcal{Y} \quad \times_{1, \dots, x_{d}, y} \in \mathbb{R} \\
\left(\left(\left(x_{1}, \dots, x_{d} \right), \, y \right) \in \mathcal{X} \times \mathcal{Y} \quad \times_{1, \dots, x_{d}, y} \in \mathbb{R} \right)$$

Exercise 6: Suppose you wanted to keep information of house being sold. You decide to use two features to represent each house and to keep track of the price (an element of $[0, \infty)$) it was sold at. The first feature was the number of rooms (an natural number), the second feature was the square footage (an element of $[0, \infty)$). How would you write the set of all possible houses that are represented in this way? Elements of this set should look like $((x_1, x_2), y)$ where $x_1 \in \mathbb{N}, x_2 \in \mathbb{R}$ and $y \in \mathbb{R}$.

Exercise 7: How would you write the set that contains all the tuples of the form $(((x_{1,1},x_{2,1}),y_1),\ldots,((x_{n,1},x_{n,2}),y_n))$ where $x_{i,1},x_{i,2}\in\mathbb{R}$ and $y_i\in\{0,1\}$ for all $i\in\{1,\ldots,n\}$. \square $(\chi \times \chi)$ where $\chi = \mathbb{R}^2$, $\chi = \{0,1\}$

$$= ((R^2) \times R)^n \qquad \qquad \chi \in R^2 \qquad \chi = (1, 2)$$

 $|R^2 = \{(a,b) | a \in \mathbb{R}, b \in \mathbb{R}\}$

 $D_{i} \in \{D_{i}, D_{i}\}$ $(\mathcal{R}^{2}) \times \mathcal{R})^{n} = (\mathcal{X}) \times \mathcal{Y})^{n}$ where $\mathcal{X} = \mathcal{R}^{2}$

A: 50, Di3 > 5+ ... }

f: R>R

$$Z^3 = Z \times Z \times Z$$

$$\mathcal{Z} = \chi \times \mathcal{Y} \qquad (\chi \times \mathcal{Y})^3$$

$$z^2 = (x + y)^2$$

$$z = x + y$$