Probabllity, continued

CMPUT 267: Basics of Machine Learning



Outline

1. Multiple Random Variables
2. Independence

3. EXxpectations and Moments



Recap: Random Variables

Random variables are a way of reasoning about a complicated underlying
probabillity space in a more straightforward way.

Example: Suppose we observe both a die's number, and where it lands.
Q = {(left,1), (right,1), (left,2), (right,2), ..., (right,6)}

We might want to think about the probability that we get a large number,
without thinking about where it landed.

We could ask about P(X > 4), where X = number that comes up.



What About Multiple Variables®

* 5o far, we've really been thinking about a single random variable at a time
o Straightforward to define multiple random variables on a single probability space

Example: Suppose we observe both a die's number, and where it lands.
Q = {(left,1), (right,1), (left,2), (right,2), ..., (right,6)}

X(w) = @, = number

Y(w) = {1 o= left} = ] if landed on left
0 otherwise.

P(Y=1)=P{o | X(w) =1})
PX>4ANY=1)=P({w | X(w) >24ANY(w)=1})



Joint Distribution

We typically model the interactions of different random variables.

Joint probability mass function: p(x,y) = P(X =x,Y = y)

> ) pey) =1

xXEX yeY

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

Y=0 Y=1
""" w_g PX=0Y=0)= P(X=0, Y=1)=
1/2 1/100




Questions About Multiple Variables

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

=0 =1
""" weg PX=0Y=0)= P(X=0,Y=1)=
e e 17100
X=1 P(X=1,Y=0) = PX=1, Y=1) =
- 1/10 39/100

* Are these two variables related at all? Or do they change independently?

* Given this distribution, can we determine the distribution over just Y*?
.e., what is P(Y = 1)? (marginal distribution)

* [f we knew something about one variable, does that tell us something albout the distribution
over the other? E.g., if | know X = O (person is young), does that tell me the
conditional probability P(Y =1 | X = 1)? (Prob. that person we know is young has arthritis)




Conditional Distribution

Definition: Conditional probability distribution
PX=x,Y=Yy)
P(X = x)

PY=y|X=1x) =

This same equation will hold for the corresponding PDF or PMF;

px,y)
p(x)

ply | x) =

Question: if p(x, y) is small, does that imply that p(y | x) is small?

e.g., Imagine x = arthritis and y = old



PVIFs and PDEFs of Many Variaples

In general, we can consider a d-dimensional rando

—

valued outcomes x = (X, ..., X;), wit

Discrete case:

N each X; C

M variable X = (X, ..., X ;) with vector-

nosen from some .. Then,

p: X XAy X ... XX ,;— [0,1]is a (joint) probability mass function if

Z Z Z P, X, .o xy) =1

Continuous case:

Xdeg‘d

p: X XAy X ... XA ,;— [0,00)is a (joint) probability density function if

)L

1 2 d

J p(xy, X, ..
q

LX) dxdx,...dx; =1



Rules of Probabillity Already Covered
the Multidimensional Case

Outcome spaceis X = XL | X X X ... X X,

Outcomes are multidimensional variables X =[xy, X5, . . . , X

Discrete case:
p . & — |0,1]is a (joint) probability mass function if Z p(x) =1
). (= A

Continuous case:

p . X — [0,00)is a (joint) probability density function ifJ p(xX)dx =1
VA

But useful to recognize that we have multiple variables



Marginal Distributions

A marginal distribution is defined for a subset of X by summing or
integrating out the remaining variables. (We will often say that we are
"marginalizing over" or "marginalizing out" the remaining variables).

Discrete case:

px;) = Z Z 2 Z PXps ooy Xi 3 Xy Xis 1y o e ey Xg)

XE€EL | XN €L X €Ly XE

l

Continuous:
px) = j J J J P(X[s ey Xi_ 15 Xis Xj 1y o e ey Xg) dXp...dX;_1dX; .. .dX,
L' X

‘%1 i—1 i+1 d



Back to our example

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

=0 =1
""" weg PX=0Y=0)= P(X=0,Y=1)=
e e 17100
X=1 P(X=1,Y=0) = PX=1, Y=1) =
- 1/10 39/100

Exercise: Check if Z Z px,y) =1
x€{0,1} ye{0,1}

Exercise: Compute marginal p(y) = Z px,y)
x€{0,1}



Back to our example (cont)

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

=0 =1
""" wog PX=0Y=0)= P(X=0,Y=1)=
e e 17100
X=1 P(X=1,Y=0) = PX=1, Y=1) =
S 1/10 39/100

Exercise: Checkif ) p(x,y) = 1/2+ 17100 + 1/10 + 39/100 = I
x€{0,1} ye{0,1}

Exercise: Compute marginal p(y = 1) = 2 px,y=1) =40/100,
x€{0,1}

p(y=0)=1-p(y=1)=60/100



Marginal Distributions

A marginal distribution is defined for a subset of )7 by summing or integrating

out the remaining variables. (We will often say that we are "marginalizing over" or
"marginalizing out" the remaining variables).

Discrete case: p(x;) = 2 2 Z Z DXy ey X5 Xjy Xj s -5 X7)

XEXL | X €L 1 X €Ly XEX

Continuous: p(x) = J J J J DXLy oo s Xi 3 Xy Xi s - X)X cdX;_dX; .. dXg
L 9% X

SZII i—1 i+1 d
Question: How do we get p(x;, x;) for some i, |7

Question: Why p for p(x;) and p(x{, ..., X;)?
 [hey can't be the same function, they have different domains!



Are these really the same function®

* No. They're not the same function.
* But they are derived from the same joint distribution.
e SO for brevity we will write
p(x,y)
p(x)
* Even though it would be more precise to write something like
p(x,y)

Px(x)
* We can tell which function we're talking about from context (i.e., arguments)

piy | x) =

PY\X(Y | X) =



Chain Rule

-rom the definition of conditional probabillity:

p(y | x) _ PLey)
p(x)
= po | opey =28 0
p(x)
< p(y | x)p(x) = p(x,y)

This is called the Chain Rule.



Multiple Variable Chain Rule

The chain rule generalizes to multiple variables:

px,y,2) = px,y | 2pi) =px |y dpQy| 2)pk)

p(;,z)

Definition: Chain rule

d—1
Py, ..., X)) = p(xd)Hp(xi | X g - Xy)
i=1

d
= p(xl)Hp(xi | X1, ... Xp)
i=2




The Order Does Not Matter

The RVs are not ordered, so we can write

px,y,z) = px |y, 2)p(y|2)p(2)
=px | y,2p|y)p(y)
=p(y | x,2)p(x| 2)p(2)
= p(Qy | x,2)p(z| x)p(x)
= p | x, y)p(y | x)p(x)
=p | x,y)px|y)p(y)

All of these probabllities are equal



Bayes Rule

-rom the chain rule, we have:

px,y) = p(y | x)p(x)

=px | Y)p(y)
 Often, p(x | y) is easier to compute than p(y | x)

* e.g., where x Is features and y is label

Definition: Bayes' rule

Posterior

\
717

l
px | yp(y)

/

Prior

«

Evidence




Announcements (Sept 9)

 How was it going through the Julia tutorials”

* Hopefully you have started Assignment 1 and the readings

* Any questions?



Example:

Posterior /
AN p y)
Dlsease TeS-t = <—Evidence
mxamle: Questions:

p(Test = pos | Dis =T) = 0.99
p(Test = pos | Dis = F) = 0.03
p(Dis =T) = 0.005

Mapping to the formula, let
Test be X (evidence)
Y be presence of the Disease

1.

2. Whatis p(Dis = T | Test = pos)?

What is p(Dis = F)?




Example:

Posterior /
N\
. =p(x y) .
Disease lest EEIE a7 el
mxample: Questions:

p(Test = pos | Dis =T) = 0.99
p(Test = pos | Dis = F) = 0.03
p(Dis = T) = 0.005

1.

What is p(Dis = F)?

2. Whatis p(Dis = T | Test = pos)?

p(Dis=F)=1—-pDis=T)=1—-0.005 = 0.995



Example: N
AN px y)

Disease |lest T 7y P

Example:
p(Test = pos | Dis =T) = 0.99

p(Test — pOS ‘ Dis = F) = (0.03
p(Dis = T) = 0.005 2. Whatis p(Dis = T | Test = pos)?

Questions:

1. Whatis p(Dis = F)?

p(Test = pos | Dis = T)p(Dis = T)
p(Test = pos)

p(Dis =T | Test = pos) =
\

Need to compute this part



Example:
Disease |est

Example:
p(Test = pos | Dis =T) = 0.99
p(Test = pos | Dis = F) = 0.03
p(Dis =T) = 0.005

Poster< /
o1 2k
<+<—Evidence
Questions:

1. Whatis p(Dis = F)?

2. Whatis p(Dis = T | Test = pos)?

p(Test = pos) = Z p(Test = pos, d)
de{T,F)

= p(Test = pos,D = F) + p(Test = pos,D = T)

= p(Test = pos|D = F)p(D = F) + p(Test = pos|D =T)p(D =T)

= 0.03 X 0.995 4+ 0.99 x 0.005 = 0.0348



EXample: e

Disease Test
Example:
p(Test = pos | Dis = T) = 0.99 Questions:
p(Test = pos | Dis = F) = 0.03 1. Whatis p(Dis = F)?

p(Dis = T) = 0.005 >. What is p(Dis = T | Test = pos)?

p(Test = pos) = 0.0348

p(Test = pos | Dis = T)p(Dis =T)  0.99 X0.005
p(Test = pos) ~0.0348

p(Dis =T | Test = pos) = ~ 0.142



INndependence of Random Variables

Definition: X and Y are independent if:

px,y) = p)p(y)

X and Y are conditionally independent given Z if:

px,y|z2)=pkx|2pQ|2)




Another Marginalization Example

* |magine you get to draw two random candies from a bag of treats

e Say there are 5 types of candies (1, 2, 3, 4, 5), equally distributed in the bag

e Let X = First Candy You Got and Y = Second Candy You Got

e Whatis p(X = 1)?
e Whatisp(X =1,Y = 3)?



INndependence of Random Variables

Definition: X and Y are independent if:

px,y) = p)p(y)

X and Y are conditionally independent given Z if:

px,y|z2)=pkx|2pQ|2)




Example: Coins
(EX.7 In the course text)

e Suppose you have a biased coin: It does not come up heads with
orobability 0.5. Instead, it is more likely to come up heads.

» Let Z be the bias of the coin, with £ = {0.3,0.5,0.8} and probabilities
P(Z=03)=0.7,PZ=0.5)=02and P(Z=0.8) =0.1.
* Question: \What other outcome space could we consider?
* Question: \What kind of distribution is this?
* Question: \What other kinds of distribution could we consider?



Example: Coins (2)

Now imagine | told you Z = 0.3 (i.e., probability of heads is 0.3)

Let X and Y be two consecutive flips of the coin

What is P(X = Heads |Z = 0.3)? What about P(X = Tails|Z = 0.3)?

What is P(Y = Heads |Z = 0.3)? What about P(Y = Tails|Z = 0.3)?

sPX=x,Y=y|Z=03)=PX=x|Z=03)P(Y=y|Z=0.3)?



Example: Coins (3)

« Now imagine we do not know Z
* e.d., you randomly grabbed it from a bin of coins with probabillities

PZ=03)=0.7,PZ=05)=02and P(Z=0.8)=0.1
e What is P(X = Heads)?

P(X = Heads)= ), P(X = Heads|Z=)p(Z =2)
2€{0.3,0.5,0.8)
= P(X = Heads|Z = 0.3)p(Z = 0.3)
+P(X = Heads |Z = 0.5)p(Z = 0.5)
+P(X = Heads |Z = 0.8)p(Z = 0.8)
=0.3%x0.74+05x02+0.8x0.1 =0.39



Example: Coins (4)

* Now imagine we do not know Z
* e.g., you randomly grabbed it from a bin of coins with probabillities

PZ=03)=0.7,P(Z=0.5)=0.2and P(Z=0.8) =0.1
e IsP(X = Heads,Y = Heads) = P(X = Heads)p(Y = Heads)?
e [or brevity, lets use h for Heads

PX=hY=h) = 2 PX=hY=h|Z=2pZ=2)
2€{0.3,0.5,0.8)

— 2 PX=h|Z=2PY =h|Z=2pZ=7)
2€{0.3,0.5,0.8)




Example: Coins (4)

. P(Z=023) =

0.7, P(Z=0.5)=0.2and P(Z=0.8) =0.1

e IsP(X = Heads,Y = Heads) = P(X = Heads)p(Y = Heads)"

PXX="hY=h)

— 2 PX=hY=h|Z=2)p(Z=72)
2€{0.3,0.5,0.8)

) PX=h|Z=2)P(Y=h|Z=2pZ=7)
z€{0.3,0.5,0.8}
=PX=h|Z=03)P(Y=h|Z=0.3)pZ = 0.3)
+PX=h|Z=05PY =h|Z=05p(Z=0.5)
+PX=h|Z=08)p(Y="nh|Z=0.8)p(Z=0.8)
=03%X03x0.74+05x%xx%05x%x024+0.8x%x0.8x0.1
= 0.177 # 0.39*0.39 = 0.1521



Example: Coins (4)

et Z be the bias of the coin, with £ = {0.3,0.5,0.8} and probabilities
P(Z=03)=0.7,P(Z=0.5)=0.2and P(Z=0.8) =0.1.

Let X and Y be two consecutive flips of the coin

Question: Are X and Y conditionally independent given Z?

e e, PX=x,Y=y|Z=2)=PX=x|Z=2)P(Y=y|Z=12)
Question: Are X and Y independent?

e | e, P(X:x,Yzy) =P(X=X)P(Y=y)



The Distribution Changes Based on
VWhat We Know

The colin has some true blas z

f we know that bias, we reason about P(X = x| Z = 7)
 Namely, the probability of x given we know the bias is z

If we know do not know that bias, then from our perspective the coin
outcomes follows probabilities P(X = x)

* [he world still flips the coin with bias z

Conditional independence is a property of the distribution we are reasoning
about, not an objective truth about outcomes




A DIt more Intultion

e |[f we know do not know that bias, then from our perspective the coin
outcomes follows probabilities P(X = x, Y = y)

e and X and Y are correlated

o |f we know X = h, do we think it’s more likely Y = h? i.e., is
PX=hY=h)>PX=hY=1)



My brain hurts, why do | need to
KNnow about coins?

e |.2., how IS this relevant

e [et’simagine you want to infer (or learn) the bias of the coin, from data

e data in this case corresponds to a sequence of flips X, X5, ..., X,

» Youcanask: PZ=z|X,=H,X, =H,X;=1T,...,.X =H)

See 10 Heads
p(2) and 2 Tails p(2)
_—
H = H B
0.3 0.5 0.8 0.3 0.5 0.8




More uses for Independence
and conditional Independence

e |f|told you X = roof type was independent of Y = house price, would you
use X as a feature to predict Y7

* |magine you want to predict Y = Has Lung Cancer and you have an indirect
correlation with X = Location since in Location 1 more people smoke on
average. If you could measure Z = Smokes, then X and Y would be

conditionally independent given Z.

e Suggests you could look for such causal variables, that explain these
correlations

 We will see the utility of conditional independence for learning models



=Xpected Value

The expected value of a random variable is the weighted average of that
variable over its domain.

Definition: Expected value of a random variable

er o-Xp(x) if X is discrete

—[X] =

f - xp(x)dx if X is continuous.




Relationsnhip to Population Average
and Sample Average

Or Population Mean and Sample Mean

Population Mean = Expected Value, Sample Mean estimates this number

* e.g., Population Mean = average height of the entire population

For RV X = height, p(x) gives the probability that a randomly selected person
has height x

Sample average: you randomly sample n heights from the population
* Implicitly you are sampling heights proportionally to p

As n gets bigger, the sample average approaches the true expected value



Connection to Sample Average

* |magine we have a biased coin, p(x = 1) = 0.75, p(x = 0) = 0.25
* Imagine we flip this coin 1000 times, and see (x = 1) 700 times

 [he sample average IS

1 1000 1
000 24 = Togo | &+ 2

300 700
= () X F1 X ==0X03+1x0.7=0.7
1000 1000

* [he true expected value Is
Y px=0xplx=0)+1p(x=1)=0x025+1x0.75 = 0.75
xe{0,1}



EXpected Value with Functions

The expected value of a function f : & — R of a random variable is the
welighted average of that function's value over the domain of the variable.

Definition: Expected value of a function of a random variable

er o JOOp(x) if X'is discrete
I&p f(x)p(x)dx if Xis continuous.

—[fX)] =

Example:
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped.
What are your winnings on expectation”




EXpected Value Example

Example:
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped.

What are your winnings on expectation?

X is the outcome of the coin flip, 1 for heads and O for tails
3 ifX=0
X) =
f1x) {10 if X =1
Y = f(X) is a new random variable

(Y] = ELfX0] = ), fp@) = f0)p0) +f(p(1) = 5% 3 +.5% 10 = 6.5

b=t A




Expected Value Is a Lossy Summary

P(X)
P(X)




Conditional Expectations

Definition:
The expected value of ¥ conditional on X = x is

Zyey yp(y | x) if Yis discrete,
_[Y ‘ X — x] —
f? yp(y | X) dy if Y is continuous.




Conditional Expectation Example

« X is the type of a book, O for fiction and 1 for non-fiction

» p(X = 1) is the proportion of all books that are non-fiction

e Y is the number of pages

» p(Y = 100) is the proportion of all books with 100 pages

« E[Y|X = 0] is different from E[Y | X = 1]
e e.9. E[Y|X = 0] = 70 is different from E[Y | X = 1] = 150

 Another example: E[X | Z = 0.3] the expected outcome of the coin flip
given that the biasis 0.3 (E[X|Z=0.3] =0x 0.7+ 1 x 0.3 = 0.3)




Conditional Expectation Example (cont)

» What do we mean by p(y| X = 0)? How might it differ from p(y | X = 1)

Lots of shorter books

| ots of medium A long talil, a few very long books

length books



Conditional Expectation Example (cont)

» What do we mean by p(y| X = 0)? How might it differ from p(y | X = 1)

Ml

« E[Y|X = 0] is the expectation over Y under distribution p(y | X = 0)

« E[Y|X = 1] is the expectation over Y under distribution p(y | X = 1)




Conditional Expectations

Definition:
The expected value of ¥ conditional on X = x is

Zyeyyp(y | x) if Yis discrete,

- Y ‘ X =x| =
f? yp(y | x)dy if Yis continuous.

Question: What is E[Y | X]?




Properties of Expectations

e Linearity of expectation:

« [ElcX] = cE[X] for all constant ¢
» E[X+ Y] =E[X]+E[Y]

* Products of expectations of independent

random variables X, Y:
» E[XY] = E[X]E[Y]

 Law of lotal Expectation:

. E|E[Y|X]| = EY

* Question: How would you prove these?



| Inearity of Expectation

X+Y]= ) pEy)E+y) 2 2 PEyx= 2, ) plny

(X, Y)EX XY YEY x€X xeZ yeY
= ), D Py +) = 2, x ) pwy) Bp= ), plxy)
VEY x€XL Y&t yed VEY
= Z xp(x)
xXeX

= Y peeyx+ Y Y peryy

YEY x€XL YEY XxE€EX —

=[X ]




| Inearity of Expectation

(X + Y] = Z px,y)(x +y) D D pyx= ) Y plyx

(X V)EXLXY YEY x€XL XX ye¥Y
— Z Z p(x, v)(x + V) = Y x ) px.y) >p&x)= ) p@.y)
yEY x€X xel yey YEY
= Z xp(x)
~ Z ZP(X,)/)X—I— Z ZP(X,Y))’ XEX
YEY x€XL YEY x€XL = E[X]

= E[X] + E[Y]




What If the RVs are continuous?

X+YI= Y ploy)C+y) (X + Y] = J px, y)(x + y)d(x, y)
XY EXXY s
= > D pr.y)E+y) = J I p(x, y)(x + y)dxdy
YEY xeX a4
— yezg XEZSZ plx, y)x + yezy XEZ%P(X, y)y — J I p(x, V)xdxdy + J [ p(x, v)ydxdy
= E[X] + E[Y] g o
= J XJ p(x, y)dydx + [ yJ p(x, y)dxdy
T Yy Yy X

J XP(X)dX-FJ yp(V)dy
X /

[ Y]

[
—
>
_|_




Properties of Expectations

Linearity of expectation: E[Y]= ) yp(y) def. E[Y]

ey
[cX] = cElX]for all constant ¢ = Z y Z px,y) def. marginal distribution
« E[X+ Y] =E[X]+ E[Y] y§”§ff
= yp(x, y)

Products of expectations of independent ‘€% yey rearrange sums

random variables X, Y- = ) Yy | p) Chain rule
XEX yeY

» E[XY] = E[X]E[Y]

L aw of Total Expectation: B XZ; [yg;y Py | x)]p ()

. _l‘[Y‘XH = ‘[Y] =Z([E[Y\X=x])p(x) def. E[Y | X = X]
xed

Question: How would you prove these” - Z (ELY | X = x]) p(x)

xXeX
= E (E[Y | X]) B def. expected value of function



Variance

Definition: [he variance of a random variable Is

Var(X) =

= [(X—

[ X])?|.

.e., E[ f(X)] where f(x) = (x — -[X])z.

—quivalently,
Var(X) =

(Exercise: Show that this is true)

- [X?] = (E1X])°




Covariance

Definition: The covariance of two random variables Is

Cov(X,Y) =

- [(x -

- [ XY | =

=X ]

E[X)(Y — E[Y))]

-1 Y].

Large Negative

Covariance

Near Zero
Covariance

Question: \What is the range of Cov(X, Y)?

Large Positive
Covariance




Correlation

Definition: The correlation of two random variables IS
Cov(X, Y)

\/ Var(X)Var(Y)

Corr(X, Y) =

Large Negative Near Zero Large Positive
Covariance Covariance Covariance

Question: \What is the range of Corr(X, Y)?
hint: Var(X) = Cov(X, X)




Properties of Varlances

« Var|c] = 0 for constant ¢

e Var[cX] = ¢*Var[X] for constant ¢

e Var| X+ Y] = Var|X] + Var| Y] + 2Cov| X, Y]

* Forindependent X, Y,

Var| X + Y| = Var| X ]| + Var[ Y] (why?)



INndependence and Decorrelation

e Recallif Xand Y are independent, then E[XY | = E[X]E[Y]

* [ndependent RVs have zero correlation (why?)

hint: Cov| X, Y| = E|XY]| — E[X]E[Y]

» Uncorrelated RVs (i.e., Cov(X, Y) = 0) might be dependent

(i.e., p(x,y) # p(xX)p(y)).

e (Correlation (Pearson's correlation coefficient) shows linear relationships; but can
Miss nonlinear relationships

« Example: X ~ Uniform{—2, — 1,0,1,2}, Y = X2
e EIXY]=2(-2%x4)+ 22%x4)+ 2(-1x1D)+.2(1 x1)+.2(0x0)
- E[X]=0
» So E[XY] - E[X]E[Y]=0—-0E[Y]=0




Summary

Random variables takes different values with some probability

The value of one variable can be informative about the value of another

e Distributions of multiple ranc

distribution (joint

O

PMFE or joir

’[

M variables are described by the joint probability

PDF)

* You can have a new distribution over one variable when you condition on the other

The expected value of a random variable is an average over its values, weighted by
the probabillity of each value

The variance of a random variable is the expected squared distance from the mean

ne covariance and correlation of two random variables can summarize how changes

h

one are informative about changes in the other.



EXercise applying your knowledge
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We want to model commute time as a Gaussian 210

1

'S revisit the commuting example, and assume we collect continuous
Mmmute times

2
o~ 357 (W—p)

What parameters do | have to specify (or learn) to model commute times
with a Gaussian®?

s a Gaussian a good choice?
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EXercise applying your knowledge

* A better choice is actually what is called a Gamma distribution
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EXercise applying your knowledge

» We can also consider conditional distributions p(y | x)

e Y isthe commute time, let X be the month

» Why is it useful to know p(y | X = Feb) and p(y | X = Sept)?

« \What else could we use for X and why pick it?
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EXercise applying your knowledge

o Letuse asimple X, whereitis 1 ifitis slippery out and O otherwise

 T[Then we could model two Gaussians, one for the two types of conditions

p(y| X =0) =N (po,05)
p(y| X =1) :N(Mlyff%) 07—

— 1=0,0=0.5
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EXercise applying your knowledge

e Eventually we will see how to model the distribution over Y using functions
of other variables (features) X

p(y|x) = szzu
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