
Homework Assignment 6
Due: Friday, November 8, 2024, 11:59 p.m. Mountain time

Total marks: 26

Policies:

For all multiple-choice questions, note that multiple correct answers may exist. However, selecting
an incorrect option will cancel out a correct one. For example, if you select two answers, one
correct and one incorrect, you will receive zero points for that question. Similarly, if the number
of incorrect answers selected exceeds the correct ones, your score for that question will be zero.
Please note that it is not possible to receive negative marks. You must select all the correct
options to get full marks for the question.
While the syllabus initially indicated the need to submit a paragraph explaining the use of AI or
other resources in your assignments, this requirement no longer applies as we are now utilizing
eClass quizzes instead of handwritten submissions. Therefore, you are not required to submit any
explanation regarding the tools or resources (such as online tools or AI) used in completing this
quiz.
This PDF version of the questions has been provided for your convenience should you wish to print
them and work offline.
Only answers submitted through the eClass quiz system will be graded. Please do not
submit a written copy of your responses.

Question 1. [1 mark]

Consider the predictor f(x) = xw, where w ∈ R is a one-dimensional parameter, and x rep-
resents the feature with no bias term. Suppose you are given a dataset of n data points D =
((x1, y1), (x2, y2), . . . , (xn, yn)), where each yi is the target variable corresponding to feature xi. Let
the loss function be the scaled squared loss `(f(x), y) = c(f(x)− y)2 where c ∈ R. The estimate of
the expected loss for a parameter w ∈ R is defined as the following convex function:

L̂(w) =
1

n

n∑
i=1

c(xiw − yi)2

What is the closed form solution for ŵ = arg minw∈R L̂(w) ?

a. ŵ =
∑n

i=1 cxiyi∑n
i=1 x

2
i

b. ŵ =
∑n

i=1 yi
n

c. ŵ =
∑n

i=1 yi∑n
i=1 xi

d. ŵ =
∑n

i=1 xiyi∑n
i=1 x

2
i

Question 2. [1 mark]

Let everything be defined as in the previous question. Suppose we consider the multivariate case
where f(x) = x>w, and w ∈ Rd+1. What is the closed form solution for ŵ = arg minw∈Rd+1 L̂(w)?
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a. ŵ = A−1b where A =
∑n

i=1 xix
>
i and b =

∑n
i=1 xiyi (assume that A is invertible).

b. ŵ = Ax where A =
∑n

i=1 xix
>
i

c. ŵ = 1
n

∑n
i=1 xi

d. ŵ =
∑n

i=1 cxiyi∑n
i=1 cx

2
i

Question 3. [1 mark]

Let g(w) = − lnw
∑n

i=1 yi − ln(1− w)
∑n

i=1(1− yi) where w ∈ R. We can rewrite this a bit more
simply as g(w) = −s lnw − (n− s) ln(1− w) where s =

∑n
i=1 yi. What is the derivative g′(w) and

the first order gradient descent update rule with a constant step size η?

a. g′(w) = − s
1−w + n−s

w and update rule w ← w − η
(
− s

1−w + n−s
w

)
b. g′(w) = − s

w + n−s
1−w and update rule w ← w − η

(
− s

1−w + n−s
w

)
c. g′(w) = − s

w + n−s
1−w and update rule w ← w − η

(
− s

w + n−s
1−w

)
d. g′(w) = − s

1−w −
n−s
w and update rule w ← w − η

(
− s

1−w −
n−s
w

)

Question 4. [1 mark]

Let everything be defined as in the previous question. What is the second derivative g′′(w) and the
second order gradient descent update rule?

a. g′′(w) = s
w2 − n−s

(1−w)2
and update: w ← w − − s

w
+ n−s

1−w
s

w2−
n−s

(1−w)2

b. g′′(w) = s
w2 + n−s

(1−w)2
and update: w ← w − − s

w
+ n−s

1−w
s

w2 + n−s

(1−w)2

c. g′′(w) = − s
w2 + n−s

(1−w)2
and update: w ← w − − s

w
+ n−s

1−w

− s
w2 + n−s

(1−w)2

d. g′′(w) = s
w2 + n−s

(1−w)2
and update: w ← w +

− s
w

+ n−s
1−w

s
w2 + n−s

(1−w)2

Question 5. [1 mark]

Let everything be defined as in the previous question. What is the closed form solution for

w∗ = arg min
w∈R

g(w)

a. w∗ = n/s

b. w∗ = s/(n− s)

c. w∗ = s/(s− n)
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d. w∗ = s/n

Question 6. [1 mark]

Let g(w) = w4 + e−w where w ∈ R. What is the derivative g′(w) and the first order gradient
descent update rule with a constant step size η?

a. g′(w) = 4w3 − e−w and update: w ← w − η(4w3 − e−w)

b. g′(w) = 4w3 + e−w and update: w ← w − η(4w3 + e−w)

c. g′(w) = 4w3 + e−w and update: w ← w + η(4w3 + e−w)

d. g′(w) = 4w3 − e−w and update: w ← w + η(4w3 − e−w)

Question 7. [1 mark]

Let everything be defined as in the previous question. What is the second derivative g′′(w) and the
second order gradient descent update rule?

a. g′′(w) = 12w2 − e−w and update: w ← w − 4w3−e−w

12w2−e−w

b. g′′(w) = 12w2 + e−w and update: w ← w + 4w3−e−w

12w2+e−w

c. g′′(w) = 12w2 + e−w and update: w ← w − 4w3−e−w

12w2+e−w

d. g′′(w) = 12w2 − e−w and update: w ← w + 4w3−e−w

12w2−e−w

Question 8. [1 mark]

Let everything be defined as in the previous question. For the second order update rule, calculate
w(1) if w(0) = 0.

Question 9. [1 mark]

Let everything be defined as in the previous question. Change the step size to be calculated using
the normalized gradient. For the first order update rule, calculate w(1) if w(0) = 0, η = 1. Only for
this problem, set ε = 0.

Question 10. [1 mark]

Let g(w) = g(w1, w2) = w2
1w

2
2 + e−w1 + e−w2 where w ∈ R2. What is the gradient of g(w) and the

first order gradient descent update rule with a constant step size η?

a. w(t+1) = w(t) − η
(

2w
(t)
1 (w

(t)
2 )2, 2w

(t)
2 (w

(t)
1 )2

)>
b. w(t+1) = w(t) − η

(
2w

(t)
1 (w

(t)
2 )2 − e−w

(t)
1 , 2w

(t)
2 (w

(t)
1 )2 − e−wx

2 (t)
)>

c. w(t+1) = w(t) − η
(

2w
(t)
1 (w

(t)
2 )2 + e−w

(t)
1 , 2w

(t)
2 (w

(t)
1 )2 + e−w

(t)
2

)>
d. w(t+1) = w(t) − η

(
−2w

(t)
1 (w

(t)
2 )2 + e−w

(t)
1 ,−2w

(t)
2 (w

(t)
1 )2 + e−w

(t)
2

)>
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Question 11. [1 mark]

If F ⊂ G, then is it true that minf∈F L̂(f) ≥ ming∈G L̂(g)?

Question 12. [1 mark]

Consider the setting of polynomial regression. Let d = 2, such that x = (x0 = 1, x1, x2), and p = 4,
then p̄ = 10. True or False?

Question 13. [1 mark]

Let everything be defined as in the previous question. The expression for φp(x) is given by

φ(x) =
(
x1, x2, x

2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2, x

4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2

)
.

True or False?

Question 14. [1 mark]

Suppose that

F̄p = {f |f : Rd+1 → R, and f(x) = log(φp(x)>w), for some w ∈ Rp̄}.

Is it true that F̄1 ⊂ F̄2 ?

Question 15. [1 mark]

You are predicting house prices. Supose you want to make the irriducible error smaller. If you
gather a new feature about houses (that you didn’t already have) such as the number of swimming
pools in the backyard, is it likely to decrease the irriducible error? True or False?

Question 16. [1 mark]

Consider the same setting as the previous problem. The estimation error can be reduced by reducing
the number of data points. True or False?

Question 17. [1 mark]

Consider the same setting as the previous problem. The approximation error can be reduced by
using a larger function class. True or False?

Question 18. [1 mark]

You notice your predictor is overfitting. To reduce overfitting, we should make the degree p of the
polynomial function class larger. True or False?

Question 19. [1 mark]

Suppose that you have a small dataset, but a large function class. Would the variance be large or
small? Would you expect the bias to be large or small? Would you expect the predictor f̂D to be
underfitting or overfitting the data or neither?

a. variance large, bias large, overfit.

b. variance small, bias large, overfit.
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c. variance large, bias small, overfit.

d. variance small, bias small, underfit.

Question 20. [1 mark]

Suppose that you have a large dataset, but a small function class, and fBayes is much more complex
than any function in the function class. Would the variance be large or small? Would you expect
the bias to be large or small? Would expect the predictor f̂D to be underfitting or overfitting the
data or neither?

a. variance large, bias large, underfit.

b. variance small, bias large, underfit.

c. variance small, bias small, neither overfitting nor underfitting.

d. variance large, bias large, neither overfitting nor underfitting.

Question 21. [1 mark]

Suppose that you have a large dataset, a small function class F , and fBayes ∈ F . Would the variance

be large or small? Would you expect the bias to be large or small? Would expect the predictor f̂D
to be underfitting or overfitting the data or neither?

a. variance large, bias large, overfitting.

b. variance small, bias small, overfitting.

c. variance small, bias small, neither overfitting nor underfitting.

d. variance large, bias large, neither overfitting nor underfitting.

Question 22. [1 mark]

You are using regularization. You notice you are underfitting. You should decrease the value of
lambda to reduce underfitting and get a smaller test loss. True or False?

Question 23. [1 mark]

Suppose you have a dataset D = (z1, . . . , zn) containing n i.i.d. flips of a coin. Since the flips are
i.i.d. you know they all follow the distribution Bernoulli (α∗). However, you do not know what α∗

is so you would like to estimate it using MLE. Which of the following is the maximum likelihood
estimate αMLE?

a. αMLE = 1
n

∑n
i=1 αi

b. αMLE = 1
n

∑n
i=1 zi

c. αMLE = 1
n−1

∑n
i=1 zi

d. αMLE = 1
n

∑n−1
i=1 zi

5/6



Fall 2024 CMPUT 267: Basics of Machine Learning

Question 24. [1 mark]

Assume that Y |X follows a Gaussian distribution with mean µ = xw1 and variance σ2 = exp(xw2)
for all x ∈ R and w = (w1, w2) where w1, w2 ∈ R. The negative log-likelihood, can be written as
follows for a dataset D = ((x1, y1), · · · , (xn, yn)):

g(w) =

n∑
i=1

gi(w) where gi(w) = − ln p(yi|xi,w) ,

where p(·|·) is the density of the above Gaussian distribution. What is partial derivative of g with
respect to w1?

a. ∂g
∂w1

=
∑n

i=1
xi(yi−xiw1)
exp(xiw2)

b. ∂g
∂w1

=
∑n

i=1
(yi−xiw1)2

2 exp(xiw2)

c. ∂g
∂w1

= −
∑n

i=1
xi(yi−xiw1)
exp(xiw2)

d. ∂g
∂w1

= −
∑n

i=1
(yi−xiw1)2

exp(xiw2)

Question 25. [1 mark]

Let everything be defined as in the previous question. What is partial derivative of g with respect
to w2?

a.
∑n

i=1

(
− (yi−xiw1)2

2 exp(xiw2) + xi

)
b.
∑n

i=1

(
(yi−xiw1)2

2 exp(xiw2) + xi
2

)
c.
∑n

i=1

(
xi(yi−xiw1)2

2 exp(xiw2) −
xi
2

)
d.
∑n

i=1

(
−xi(yi−xiw1)2

2 exp(xiw2) + xi
2

)

Question 26. [1 mark]

Let everything be defined as in the previous question. You want to solve for wMLE using gradient
descent. Using the partial derivatives you calculated in the previous quesitons, what would the
gradient update rule look like with a constant step size η?

a. w1 ← w1 − η
∑n

i=1

(
xi(yi−xiw1)
exp(xiw2)

)
, w2 ← w2 − η

∑n
i=1

(
xi(yi−xiw1)2

2 exp(xiw2) −
xi
2

)
b. w1 ← w1 + η

∑n
i=1

(
xi(yi−xiw1)
exp(xiw2)

)
, w2 ← w2 + η

∑n
i=1

(
xi(yi−xiw1)2

2 exp(xiw2) −
xi
2

)
c. w1 ← w1 − η

∑n
i=1

(
(yi−xiw1)

2

)
, w2 ← w2 − η

∑n
i=1

(
(yi−xiw1)2

2 exp(xiw2) −
xi
2

)
d. w1 ← w1 − η

∑n
i=1

(
(yi−xiw1)
exp(xiw2)

)
, w2 ← w2 + η

∑n
i=1

(
(yi−xiw1)2

2 − xi
2

)
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